云南大学中国西南天文研究所

 首页 Home | 研究所简介 SWIFAR | 人员 People | 科学研究 Science | 科研设备 Facilities | 学术活动 Activities | 人才培养 Education | 国际合作 Collaborations | 科学普及 Outreach | 诚聘英才 Recruitment | 访问指南 For Visitors 
 
 首页 Home 
 研究所简介 SWIFAR 
 人员 People 
 科学研究 Science 
 学术活动 Activities 
 人才培养 Education 
 科学普及 Outreach 
 诚聘英才 Recruitment 
 访问指南 For Visitors 
 内部链接 Internal 
 
  过往活动 Past Events
当前位置: 首页 Home>>过往活动 Past Events>>正文
 

Lunch talk on Aug. 26, 2024

Decoding Galaxy SEDs with Physical Priors and Accurate Star Formation History Reconstruction


Speaker: Yuzhu Gao (PKU)

Venue: SWIFAR Building 2111

Time: 12:45 PM, Monday, Aug. 26, 2024

Abstract: 

The spectral energy distribution (SED) of galaxies is essential for deriving fundamental properties like stellar mass and star formation history (SFH). However, conventional methods, including both parametric and non-parametric approaches, often fail to accurately recover the observed cosmic star formation rate (SFR) density due to oversimplified or unrealistic assumptions about SFH and their inability to account for the complex SFH variations across different galaxy populations. To address this issue, we introduce a novel approach that improves galaxy broad-band SED analysis by incorporating physical priors derived from hydrodynamical simulations. Tests using IllustrisTNG simulations demonstrate that our method can reliably determine galaxy physical properties from broad-band photometry, including stellar mass within 0.05 dex, current SFR within 0.3 dex, and fractional stellar formation time within 0.2 dex, with a negligible fraction of catastrophic failures. When applied to the SDSS main photometric galaxy sample with spectroscopic redshift, our estimates of stellar mass and SFR are consistent with the widely-used MPA-JHU and GSWLC catalogs. Notably, using the derived SFHs of individual SDSS galaxies, we estimate the cosmic SFR density and stellar mass density with remarkable consistency to direct observations up to $z \sim 6$. This marks the first time SFHs derived from SEDs can accurately match observations. Consequently, our method can reliably recover observed spectral indices such as $\rm D_{\rm n}(4000)$ and $\rm H\delta_{\rm A}$ by synthesizing the full spectra of galaxies using the estimated SFHs and metal enrichment histories, relying solely on broad-band photometry as input. Furthermore, this method is extremely computationally efficient compared to conventional approaches.


Report PPT:  SWIFAR_Yuze Gao.pdf

附件【SWIFAR_Yuze Gao.pdf已下载
关闭窗口

版权所有:云南大学中国西南天文研究所 

South-Western Institute For Astronomy Research, YNU