您好欢迎来到滨海湿地生态系统教育部重点实验室

联系我们

地址:福建省厦门市翔安校区环境与生态学院A210

联系电话:0592-2189656

传真:0592-2185889

E-mail:zhengcj@xmu.edu.cn


代表性论文

当前位置: 网站首页 >> 科学研究 >> 代表性论文

Identifying the key catastrophic variables of urban social-environmental resilience and early warning signal

发布时间:2019-06-19

作者:Li, Y; Li, YF; Kappas, M; Pavao-Zuckerman, M

影响因子:7.30

刊物名称:ENVIRONMENT INTERNATIONAL

出版年份:2018

卷:113 页码:184-190

Pursuit of sustainability requires a systematic approach to understand a system's specific dynamics to adapt and enhance from disturbances in social-environmental systems. We developed a systematic resilience assessment of social-environmental systems by connecting catastrophe theory and probability distribution equilibrium. Catastrophe models were used to calculate resilience shifts between slow and fast variables; afterwards, two resilience transition modes (“Less resilient” or “More resilient”)were addressed by using probability distribution equilibrium analysis. A tipping point that occurs in “Less resilient” system suggests that the critical resilience transition can be an early warning signal of approaching threshold. Catastrophic shifts were explored between the interacting social-environmental sub-systems of land use and energy (fast variables) and environmental pollution (slow variables), which also identifies the critical factors in maintaining the integrated social-environmental resilience. Furthermore, the early warning signals enable the adaptability of urban systems and their resilience to perturbations, and provide guidelines for urban social-environmental management.

Pursuit of sustainability requires a systematic approach to understand a system's specific dynamics to adapt and enhance from disturbances in social-environmental systems. We developed a systematic resilience assessment of social-environmental systems by connecting catastrophe theory and probability distribution equilibrium. Catastrophe models were used to calculate resilience shifts between slow and fast variables; afterwards, two resilience transition modes (“Less resilient” or “More resilient”) were addressed by using probability distribution equilibrium analysis. A tipping point that occurs in “Less resilient” system suggests that the critical resilience transition can be an early warning signal of approaching threshold. Catastrophic shifts were explored between the interacting social-environmental sub-systems of land use and energy (fast variables) and environmental pollution (slow variables), which also identifies the critical factors in maintaining the integrated social-environmental resilience. Furthermore, the early warning signals enable the adaptability of urban systems and their resilience to perturbations, and provide guidelines for urban social-environmental management.

上一条:Effective harvesting of the marine microalga Thalassiosira pseudonana by Marinobacter sp FL06
下一条:Hydrological controls on nitrogen (ammonium versus nitrate) fluxes from river to coast in a subtropical region: Observation and modeling

返回