报告题目:Forecasting Option Returns with News
主讲嘉宾:韩冰, 加拿大多伦多大学罗特曼管理学院金融学教授,多伦多证券交易所资本市场讲座教授。韩冰教授的主要研究领域是资产定价,投资,行为金融学,房地产金融。他的多篇论文发表在顶级经济,金融和管理学学术杂志上,包括Journal of Finance, Journal of Financial Economics,Review of Financial Studies, Review of Economic Studies,International Economic Review, Journal of Economic Theory,Management Science等。他的研究成果受到《纽约时报》、《华尔街日报》、《华盛顿邮报》、《经济学人》等媒体的专访和报导。韩冰教授获得了众多国际知名学术奖项,包括欧洲金融协会最佳论文奖,中国金融协会会议最佳论文奖,美国个人投资者协会在资产定价研究中获优秀论文奖,上海风险论坛最佳论文奖, 中国国际金融与政策论坛杰出论文奖, 全球金融专业人士协会终身成就奖。韩冰教授现任Financial Management,Journal of Economic Dynamics and Control,Journal of Empirical Finance,International Review of Finance和Pacific-Basin Finance Journal主编和副主编。
报告摘要:This paper investigates whether text data contains useful information about the cross-section of expected equity option returns. We apply both lexicon-based and machine learning approaches to extract qualitative signals from over six million news articles. The machine learning methods outperform lexicon-based approaches in predicting delta-hedged option returns and generate sizable profits. Our results are robust after controlling for known option return predictors including volatility-related variables and various underlying stock characteristics. An analysis of the keywords identified by machine learning methods suggests the option return predictability is largely related to firm-specific sentiment and option mispricing. Our work highlights the importance of analyzing unstructured data like texts for pricing derivatives.
报告时间:2023年05月30日(周二),10:00-11:00
线下地点:厦门大学经济楼N302
线上地点:腾讯会议ID:929 2139 6317