陕西省杰出青年基金获得者
陕西省“特支计划”科技创新创业领军人才
西安交通大学王宽诚青年学者
西安交通大学青年拔尖人才(A类)
存档 - 李 群
主持项目:
[1]非均质材料断裂问题的构型力理论(11772245), 2018.1-2021.12,国家自然科学基金面上项目
[2] 基于构型力学描述材料损伤和失效的新准则(11472205), 2015.1-2018.12,国家自然科学基金面上项目;
[3] 基于微观组织演化的多晶铁电材料断裂行为及构型力研究(11202156),2013.1-2015.12,国家自然科学基金青年项目;
[4] 考虑壁厚效应、温度效应的三维弹塑性断裂韧度研究(GC-WT-2016-15), 2016.1-2016.12, 中国石油集团石油管工程技术研究院
[5] 某扫描平台分析与仿真研究,2013.5-2014.3,西安现代控制技术研究所;
[6] 微电畴偏转下的铁电裂纹扩展问题研究(2013回国基金17),2013.07-2014.07,教育部留学回国基金;
[7] 页岩气储层水力压裂技术的优化设计(2014K10-16),2014.1-2015.12, 陕西省教育厅,工业攻关;
[8] 某扫描平台分析与仿真研究(2014XT-08),2014.1-2015.12, 陕西省教育厅,协同创新;
[9] 固体氧化物燃料电池微结构演化的相场法模拟,2013.1-2014.12,西安交通大学自由探索与自主创新类项目;
[10] 多晶铁电穿晶裂纹和沿晶裂纹的构型力研究,2013.1-2014.12,西安交通大学国际科技合作项目;
[11] 铁电多晶材料的断裂损伤微观数值模拟,2012.1-2014.12,西安交通大学“新教师科研支持计划”;
[12] 页岩气储层水力压裂的裂纹缝网形成机理研究,2013.12-2015.12,西安交通大学机械结构强度与振动国家重点实验室优秀人才课题;
参与项目:
[13] 材料构型力学理论和实验研究(10932007),2010.1-2013.12,国家自然科学基金重点项目
[14] 轻质非均匀介质的力学行为(11321062),2013.1-2016.12,国家自然科学基金创新群体
[15] 非均匀电蠕变导致裂纹尖端铁电畴反转及发射机理研究(11272248),2013.1-2016.12,国家自然科学基金面上项目
讲授课程:《高等断裂力学》,2学分,40学时,研究生课程,秋上,面向全校研究生。
课程编码: 062020
课程名称:高等断裂力学
课程名称:Advanced Fracture Mechanics
学分数:2
课内总学时数:40
上机(实验)学时数:
课程内容简介:
主要介绍各向同性材料、各向异性材料和各向同性双材料界面断裂力学的数学理论及该领域国内外研究进展。其中主要包括特征展开理论、复势理论,积分变换方法,保角变换方法和奇异积分方程等数学理论和方法在断裂力学中的应用,以及近代断裂力学的一系列重要成果和发展状况等。
先修课:弹性力学,工程断裂力学
参考书目:
1. Kanninen MF and Popelar CF, Advanced Fracture Mechanics, Oxford University Press, New York. 1985
2. 李群,欧卓成,陈宜亨,《高等断裂力学》,2017,科学出版社
教学大纲
第一章 绪论
1.1 断裂力学的产生
1.2 断裂力学发展概况
1.3断裂力学的研究方法
1.4断裂力学的主要任务
第二章 数学弹性力学基础
2.1 弹性力学基本理论
2.2复变函数基本概念
第三章 复势理论的特征展开
3.1 Williams 特征展开理论及Irwin断裂理论
3.2 特征展开的性质及Bueckner-Rice权函数
第四章 柯西积分和Riemann-Hilbert问题
4.1 基本概念(第一类Cauchy积分方程,第二类积分方程)
4.2 Cauchy积分介绍
4.3齐次Riemann-Hilbert问题
4.4 非齐次Riemann-Hilbert问题
4.5 一个常用线积分的计算
4.6无限大平面有限裂纹问题
第五章 积分变换方法和对偶积分方程
5.1 Fourier变换及其性质
5.2 Hankel变换
5.3 混合边值问题(III型共线裂纹问题)
第六章 界面断裂力学基础
6.1 界面裂纹复势的特征展开
6.2 界面单裂纹问题
6.3界面裂纹的Comninou 模型
第七章 复合材料断裂力学基础
7.1各向异性线弹性体平面裂纹问题
7.2特征展开与路径无关积分
7.3多裂纹问题
第八章 压电/铁电智能材料断裂力学
8.1压电材料的基本理论
8.2 压电体的通用裂纹解
第九章 断裂力学中的数值计算方法
9.1 应力强度因子计算
9.2 能量释放率计算
9.3 J积分计算
讲授课程:《损伤力学》
课程内容简介:
1.损伤变量、有效应力和有效应变
2.损伤力学的热力学理论
3.经典损伤模型(脆性损伤、韧性损伤、蠕变损伤、疲劳损伤)
4.基于损伤的断裂力学
5.细观损伤力学
6.损伤实验测量
7.Gurson模型及其FEM实施演示
8.文献阅读报告
讲授课程:《工程结构建模与力学设计》
英文名称:Project of Engineering Structure and Mechanics
课程编号:ITDE400106
学时:48 (理论学时:16; 上机学时:16学时;讨论学时:16学时)
学分:2
适用对象:力学
先修课程:材料力学、理论力学、有限元
使用教材及参考书:
[1] 卓家寿 等,力学建模导论, 北京:科学出版社,2007
课程内容简介(200字左右)
“工程结构建模与力学设计”(2学分)为综合性力学设计类实践学习环节(一般包括资料搜集、选题论证、项目计划、力学建模、理论分析、程序编制、数值计算、验证实验、强度或振动设计、成果总结和交流等),旨在锻炼和提高学生独立自主进行专业知识与科学或工程技术相结合的实践能力。遵照“力学项目设计课程实践大纲”,在教师指导下主要由学生独立自主完成,教师的职责为确定项目主体,引导和审查学生自拟题目与项目计划,过程辅导,掌握流程进度,组织研讨、成果交流和成绩考核等,学生的职责为查阅资料,自拟题目,独立分析计算、实验、设计,参加交流研讨活动,撰写成果总结报告,通过考核获得学分。
[1] 古斌,郭宇立,李群,基于构型力断裂准则的裂纹与夹杂干涉问题研究,力学学报,2017,
[2] 余力,吕俊男,杜伟,李群,金属材料三维断裂韧度厚度效应的有限元模拟,固体力学学报,2017
[3] 李群, 欧卓成, 陈宜亨.《高等断裂力学》, 科学出版社, 2016
[4] Qun Li, JunNan Lv, Yuli Guo, XinPeng Tian. A consistent framework of material configurational mechanics in piezoelectric materials. Acta Mechanical, DOI: 10.1007/s00707-017-1966-5
[5] Q. Li*, Y.L. Guo, J.L. Hou, W.J. Zhu, The M-Integral based failure description on elasto-plastic materials with defects under biaxial loading, Mechanics of Materials 112 (2017) 163-171. IF=2.651
[6] YuLi Guo, Qun Li*, Material configurational forces applied to mixed mode crack propagation, Theoretical and Applied Fracture Mechanics, 2017, 89::147-157 IF=2.025
[7] Qun Li*, Junnan Lv, Invariant integrals of crack interaction with an inhomogeneity, Engineering Fracture Mechanics, 171 (2017) 76-84 IF=2.195
[8] Rong Wang, Hong Zuo, Yi-Min Yang, Bo Yang, Qun Li*. Finite element simulation and optimization of radial resistive force for shape memory alloy vertebral body stent, Journal of Intelligent Material Systems and Structures, 2016, DOI: 10.1177/1045389X16685442, IF=2.255
[9] Junnan Lv, XueLing Fan, Qun Li*, The impact of the growth of thermally grown oxide layer on the propagation of surface cracks within thermal barrier coatings, Surface & Coatings Technology, 309 (2017) 1033-1044 IF:2.139 IDS 号: EN7LN
[10] Suxin Pan, Qida Liu, Qun Li*, Ferroelectric creep associated with domain switching emission in the cracked ferroelectrics, Computational Materials Science, DOI information: 10.1016/j.commatsci.2017.08.048
[11] JunNanLv, Qun Li*, Equivalent configurational stress to predict material yielding and crack propagation, 2016, Acta Mechanica, 227 (10): 3055-3065 IDS 号: DY5JV IF=1.694
[12]Qun Li, Linyun Liang, Kirk Gerdes and Long-Qing Chen, Phase-field modeling of three-phase electrode microstructures in solid oxide fuel cells, Applied Physics Letters, 101, 033909, 2012.
[13]Yifeng Hu, Qun Li Junping Shi, and Yiheng Chen, Surface/interface effect and size/configuration dependence on the energy release in nanoporous membrane, Journal of Applied Physics, 112, 034302, 2012
[14]Qun Li, Yi-Feng Hu and Yi-Heng Chen, On the Physical Interpretation of the M-integral in Nonlinear Elastic Defect Mechanics, International Journal of Damage Mechanics, DOI: 10.1177/1056789512456860,2012
[15]Ning-Yu Yu. Qun Li and Yi-Heng Chen, Experimental evaluation of the M-integral in an elastic-plastic material containing multiple defects, J. Appl. Mech. 80, 011021 (2013)
[16]JianJun Wang, Saswata Bhattacharyya, Qun Li, Tae Wook Heo, XingQiao. Ma and Long-Qing Chen, Elastic solutions with arbitrary elastic inhomogeneity and anisotropy, Philosophical Magazine Letters, 2012, 1–9, iFirst
[17] Qun Li and Meinhard Kuna, Evaluation of electromechanical fracture behavior by configurational forces in cracked ferroelectric polycrystals, Computational Materials Science, 2012, 57, 94–101.
[18] Ningyu Yu and Qun Li, Yiheng Chen, Measurement of the M-integral for a Hole in an Aluminum Plate or Strip, Experimental Mechanics,52(7),855-863, 2012.
[19] Qun Li Meinhard Kuna, Inhomogeneity and material configurational forces in three dimensional ferroelectric polycrystals, European Journal of Mechanics A/Solids 2012, 31: 77-89.
[20] Qun Li, Andreas Ricoeur and Meinhard Kuna, Coulomb traction on a penny-shaped crack in a three dimensional piezoelectric body, Archive of Applied Mechanics, 2011, 81: 685–700
[21]Qun Li, Andreas Ricoeur, Marco Enderlein and Meinhard Kuna: Evaluation of electromechanical coupling effect by microstructural modeling of domain switching in ferroelectrics. Mechanics Research Communications, 2010, 37: 332–336
[22] Qun Li and YiHeng Chen: Inherent relations between the Bueckner integral and the Jk-integral or the M-integral in multi-defects damaged piezoelectric materials. Acta Mech, 2009, 204:125-136
[23] Qun Li and YiHeng Chen: The Coulombic traction on the surfaces of an interface crack in dielectric /piezoelectric or metal/piezoelectric bimaterials. Acta Mechanica, 2009, 202:111–126
[24] Qun Li and YiHeng Chen: Investigation of the crack problem in non-local piezoelectric materials under combined electromechanical loadings. Acta Mech Sin., 2009, 25:219–225
[25] Qun Li and YiHeng Chen: Surface effect and size dependence on the energy release due to a nanosized hole expansion in plane elastic materials. ASME Journal of Applied Mechanics, NOVEMBER 2008, 75: 061008-1(5pp)
[26] Qun Li and YiHeng Chen: Why traction-free? Piezoelectric crack and Coulombic traction. Arch Appl Mech, 2008, 78: 559–573.
[27] Qun Li and YiHeng Chen: The role played by the Coulombic traction for an interface crack in dissimilar piezoelectric materials. Smart Materials and Structures, 2008, 17:017001(7pp).
[28] Qun Li and YiHeng Chen: Solution for a semi-permeable interface crack in elastic dielectric /piezoelectric bimaterials. ASME Journal of Applied Mechanics, January 2008, 75(1): 011010
[29] Qun Li and YiHeng Chen, Hui Tong: Analysis of the invariant integrals in plane elasticity containing a nanosized hole. Acta Mech 2008, 199:143–150
[30] Qun Li and YiHeng Chen: Solution for a semi-permeable interface crack between two dissimilar piezoelectric materials. ASME Journal of Applied Mechanics, 2007, 74: 833-844.
[31] Qun Li and YiHeng Chen: Analysis of Crack-tip singularities for an interfacial permeable crack in metal/piezoelectric bimaterials. Acta Mechanica Solida Sinica, 2007, 20(3): 247-257.
[32] Qun Li and YiHeng Chen: Analysis of a permeable interface crack in elastic dielectric/piezoelectric bimaterials. Acta Mechanica Sinica, 2007, 23:681-687.
[33] Qun Li and YiHeng Chen: The Bueckner work conjugate integral for a permeable crack in piezoelectric materials. Acta Mechanica, 2007, 190: 237-243
[34] Qun Li, Suxin Pan, Qida Liu and Jie Wang, Domain switching emission from the mixed mode crack in ferroelectrics by birefringence measurement and phase field modeling, Smart Mater. Struct. 25 (2016) 07LT01 (7pp)
[35] Qun Li*, Junnan Lv, Invariant integrals of crack interaction with an inhomogeneity, Engineering Fracture Mechanics, 2016, DOI: 10.1016/j.engfracmech.2016.12.013.
[36] Qun Li, Junnan Lv, JunLing Hou, Hong Zuo, Crack-tip shielding by the dilatant transformation of particles/fibers embedded in composite materials, Theoretical and Applied Fracture Mechanics, 80: 242–252 (2015)
[37] Qun Li* Andreas Ricoeur, Meinhard Kuna. Coulomb traction on a penny-shaped
[38] 李 群,张 阳,雷永信,周思渊.无伞双翼末敏弹翼片安装角对其稳态扫描作战指标的影响.弹道学报(03):1-7 (2016)
[39] 李群*,材料构型力学及其在复杂缺陷系统中的应用,力学学报,47 (2): 197-214 (2015)。
[40] Junnan Lv, XueLing Fan, Qun Li*, The impact of the growth of thermally grown oxide layer on the propagation of surface cracks within thermal barrier coatings, Surface & Coatings Technology, 2016, DOI information: 10.1016/j.surfcoat.2016.10.039 IF:2.139
[41] JunNanLv, Qun Li*, Equivalent configurational stress to predict material yielding and crack propagation, Acta Mechanica, 227 (10): 3055-3065(2016)
[42] NingYu Yu, Qun Li*. Failure theory via the concept of material configurational forces associated with the M-integral. International Journal of Solids and Structures. 50: 4320-32(2013).
[43] NingYu Yu. Qun Li*, YiHeng Chen. Experimental evaluation of the M-integral in an elastic-plastic material containing multiple defects. ASME J. Appl. Mech. 80: 011021 (2013).
[44] SuXin Pan, YiFeng Hu, Qun Li*. Numerical simulation of mechanical properties in nanoporous membrane. Computational Materials Science. 79:611-618 (2013).
[45] Junling Hou, Qun Li*, Junnan Lv, Hong Zuo, Crack deflection by the transformable particles dispersed in composites, Acta Mechanica, 227(3):743-756, (2016)
[46] Junling Hou, Qun Li*, Guangyan Liu, Hong Zuo, Fundamental solutions of a crack impinging upon an interface slippage in laminated anisotropic bodies, (86):1-14, Archive of Applied Mechanics. 2015
[47] Yu-Li Guo, Qun Li*, On some fundamental properties of the L-integral in plane elasticity, Acta Mechanica, 226(1): 137-148. (2015)
[48] Rong Wang, Hong Zuo, Yi-Min Yang, Bo Yang, Qun Li*. Finite element simulation and optimization of radial resistive force for shape memory alloy vertebral body stent, Journal of Intelligent Material Systems and Structures, 2016
[49] 于宁宇, 李群*, M 积分与夹杂/缺陷弹性模量的显式关系,力学学报,46(1):87-93(2014)
[50] 于宁宇,李群*,基于数字散斑相关实验测量的材料构型力的计算方法,实验力学,29(5):579-588 (2014)
[51] Qun Li, Numerical simulation of domain switching in multilayer ferroelectric actuators, Theoretical & Applied Mechanics Letters 6:268-273 (2016)
[52] Guozhen Liu, Qingyu Lei, Matthäus A. Wolak, Qun Li, Long-Qing Chen, Christopher Winkler, Jennifer Sloppy, Mitra L. Taheri and Xiaoxing Xi, Epitaxial strain and its relaxation at the LaAlO3/SrTiO3 Interface, J. Appl. Phys. 120, 085302 (2016)。
[53] Linyun Liang; Qun Li; Jiamian Hu; Shiwoo Lee; Gerdes, K.; Long-Qing Chen,Phase field modeling of microstructure evolution of electrocatalyst/infiltrated solid oxide fuel cellcathodes, Journal of Applied Physics 117( 6): 065105(2015)
[54] JianJun Wang, XingQiao Ma, Qun Li, Jason Britson, Long-Qing Chen. Phase Transitions and Domain Structures of Ferroelectric Nanoparticles:Phase-field Model Incorporating Strong Elastic and Dielectric Inhomogeneity. Acta Materialia, 61(20): 7591-7603 (2013).
申请发明技术专利
• 于宁宇,李群,陈宜亨,专利申请号:CN201110401438.7,弹性缺陷材料M积分的无损测量方法。
• 于宁宇,李群,陈宜亨,专利申请号:CN201210004080.9,基于数字图像相关的塑性多缺陷材料M积分测量方法。
科研获奖
基于材料构型力学描述多缺陷损伤的新体系及其应用 陕西省科学技术奖(自然科学), 一等奖, 2015年,(第二完成人)