Blank

[39S. Guo, W. Yan*, L. Mei. IMEX Hermite-Galerkin spectral method for incompressible Hall-magnetohydrodynamic flow with varibale density.  SIAM Journal on Scientific Computing.  (Accepted)

[38] F. Jing, W. Han, T. Kashiwabara, W. Yan*.  On finite volume methods for a Navier-Stokes variational inequality. Journal of Scientific Computing. 2024, 98: 31.

[37] S. Guo, L. Mei, W. Yan.  A linearly implicit spectral scheme for three-dimensional Hall-MHD system.  SIAM Journal on Scientific Computing. 2024, 46(5), B752-B783.

[36] K. Zhang, S. Zhu, J. Li, W. Yan.  Shape gradient methods for shape optimization of an unsteady multiscale fluid-structure interaction model.  The Journal of  Geometric Analysis2024, 34: 245. 

[35X. Zhou, C. Qiu, W. Yan, B. Li. Mastering the Cahn–Hilliard equation and Camassa–Holm equation with cell-average-based neural network method.  Nonlinear Dynamics. 2023, 111(5): 4823-4846.

[34] Y. Li, W. Yan*, S. Zhu,  F. Jing.  Optimal error estimates of the discrete shape gradients for shape optimizations governed by the Stokes-Brinkman equations.  Applied Numerical Mathematics2023, 190: 220-253.

[33S. Guo, L. Mei, W. Yan, Y. Li.  Mass-, energy- and momentum-preserving spectral scheme for Klein-Gordon-Schrödinger system on infinite domains. SIAM Journal on Scientific Computing. 2023, 45(2), B200-B230.

[32] Y. Hou, W. Yan*, J. Hou. A fractional-step DG-FE method for the time-dependent generalized Boussinesq equations. Communications in Nonlinear Science and Numerical Simulation. 2023, 116: 106884.

 [31] M. Zhang, W. Yan*, F. Jing, H. Zhao. Discontinuous Galerkin method for the diffusive-viscous wave equation. Applied Numerical Mathematics2023, 183: 118-139.     

 [30] D. Ling, C-W. Shu, W. Yan*.  Local discontinuous Galerkin methods for diffusive-viscous wave equations. Journal of Computational and Applied Mathematics. 2023, 419: 114690.

 [29S. Guo, W. Yan*, L. Mei, C. Li. Dissipation-preserving rational spectral-Galerkin method for strongly damped nonlinear wave system involving mixed fractional Laplacians in unbounded domains. Journal of Scientific Computing2022, 93: 53. 

[28W. Wang, W. Yan*, D. Yang.  A cell-centered finite volume scheme for the diffusive–viscous wave equation on general polygonal meshes. Applied Mathematics Letters. 2022, 133: 108274.

[27Y. Hou, W. Yan*, M. Li, X. He. A decoupled and iterative finite element method for generalized Boussinesq equations. Computers and Mathematics with Applications. 2022, 115: 14-25.

[26W. Yan*, Y. Li, J. Hou. Shape optimization for an obstacle located in incompressible Boussinesq flow. Computers & Fluids. 2022,  240, 105431.

[25 S. Pei, Y. Hou, W. Yan. Efficient unconditionally stable numerical schemes for a modified phase field crystal model with a strong nonlinear vacancy potential. Numerical Methods for Partial Differential Equations. 2022, 38: 65-101.

[24Y. Hou, W. Yan*, L. Boveleth, X. He. A decoupled, parallel, iterative finite element method for solving the steady Boussinesq equations.  International Journal of Numerical Analysis and Modeling. 2022, 19(6): 739-760.

[23] S. Guo, L. Mei, C. Li, W. Yan, J. Gao. IMEX Hermite-Galerkin spectral schemes with adaptive time stepping for the coupled nonlocal Gordon-type systems in multiple dimensions. SIAM  Journal on Scientific Computing. 2021, 43(6): B1133-B1163.

[22] Y. Zhang, H. Zhao, W. Yan, J. Gao. A unified numerical scheme for coupled multiphysics model. IEEE Transactions on Geoscience and Remote Sensing. 2021, 59 (10): 8228-8240.

[21] S. Guo, W. Yan*, L. Mei, Y. Wang. A linearized spectral-Galerkin method for three-dimensional Riesz-like space fractional nonlinear coupled reaction-diffusion equations. Numerical Mathematics-Theory Methods and Applications. 2021, 14 (3): 738-772.

[20] J. Hou, W. Yan*, D. Hu, Z. He. Robin-Robin domain decomposition methods for the dual-porosity-conduit system. Advances in Computational Mathematics. 2021, 47 (1): 7

[19] Y. Hou, W. Yan*, F. Jing. Numerical analysis of the unconditionally stable discontinuous Galerkin schemes for the nonstationary conduction-convection problem.  Computers and Mathematics with Applications. 2020, 80: 1479-1499.

[18G. Peng, Z.Gao, W. Yan, X. Feng. A positivity-preserving finite volume scheme for three-temperature radiation diffusion equations. Applied Numerical Mathematics. 2020, 152: 125-140.

[17F. Jing, W. Han, Y. Zhang, W. Yan*.  Analysis of an a posteriori error estimator for a variational inequality governed by the Stokes equations. Journal of Computational and Applied Mathematics 2020, 372:112721.

[16] R. Li, Y. Gao, W. Yan,  Z. Chen. A Crank-Nicolson discontinuous finite volume element  method for a coupled non-stationary Stokes-Darcy problem. Journal of Computational and Applied Mathematics. 2019, 353: 86-112. 

[15] L. Shan, J. Hou, W. Yan, J. Chen. Partitioned time stepping method for a dual-porosity-Stokes model. Journal of Scientific Computing. 2019, 79(1): 389-413.

[14] W. Yan*, M. Liu, F. Jing. Shape inverse problem for Stokes-Brinkmann equations. Applied  Mathematics Letters. 2019, 88: 222-229. 

[13] F. Jing, W. Han, W. Yan*, F. Wang. Discontinuous Galerkin methods for a stationary Navier-Stokes problem with a nonlinear slip boundary condition of friction type. Journal of Scientific Computing. 2018,76(2): 888-912.

[12] W. Yan*, F. Jing, J. Hou. Shape inverse problem of thermodynamic equations based on domain derivative method. Mathematical Methods in The Applied Sciences. 2017,40(13): 4937-4947. 

[11] W. Yan*, J. Hou, Z. Gao. Shape identification for convection-diffusion problem based on the continuous adjoint method. Applied Mathematics Letters. 2017, 64: 74-80.

[10] W. Yan*, Z. Gao. The application of adjoint method for shape optimization in Stokes-Oseen flow. Mathematical Methods in The Applied Sciences. 2017, 40(4): 1114-1125. 

[9] W. Yan*,  Z. Gao. Shape optimization in the Navier-Stokes flow with thermal effects. Numerical Methods for Partial Differential Equations. 2014, 30(5): 1700-175.

[8] W. Yan*, Y. He, Y. Ma. A numerical method for the viscous incompressible Oseen flow in shape reconstruction. Applied Mathematical Modelling. 2012, 36(1): 301-309.

[7] W. Yan*, Y. He, Y. Ma. An iterative method of shape reconstruction for the inverse  problem. Numerical Methods for Partial Differential Equations. 2012, 28(2): 587-596.

[6] W. Yan*, Y. He, Y. Ma. Shape reconstruction of an inverse boundary value problem of two-dimensional Navier-Stokes equations. International Journal for Numerical Methods in Fluids. 2010, 62(6): 632-646. 

[5] W. Yan*, Y. He, Y. Ma. Shape inverse problem for the two-dimensional unsteady Stokes flow. Numerical Methods for Partial Differential Equations. 2010, 26(3): 690-701.

[4] W. Yan, Y. Ma. The application of domain derivative of the nonhomogeneous Navier-Stokes equations in shape reconstruction.  Computers & Fluids. 2009, 38(5): 1101-1107.

[3] W. Yan, Y. Ma. Numerical simulation for the shape reconstruction of a cavity.  Numerical Methods for Partial Differential Equations. 2009, 25(2): 460- 469. 

[2] W. Yan, Y. Ma. Shape reconstruction of an inverse Stokes problem.  Journal of Computational and Applied Mathematics.  2008, 216(2): 554-562.

[1] W. Yan, Y. Ma. Shape reconstruction for the time-dependent Navier-Stokes flow. Numerical Methods for Partial Differential Equations. 2008, 24(4): 1148-1158.