Blank

​​​​​​1. L. Yang, Z. Zhao, C. Cui, J. Zhang, J. Wei. Effect of nickel and cobalt doping on the redox performance of SrFeO3-δ toward chemical looping dry reforming of methane. Energy & Fuels, Accepted.

2. L. Yang, Z. Zhao, J. Hao, J. Wei, J. Zhang. Oxygen release and reduction kinetics of La0.35Sr0.35Ba0.3Fe1-xCoxO3 as oxygen carriers for chemical looping dry reforming of methane. Applications Energy Combust. Sci. 2023, in press

https://doi.org/10.1016/j.jaecs.2023.100173

3. L. Yang, J. Zhang, J. Wei. Highly active La0.35Sr0.35Ba0.3Fe1-xCoxO3 oxygen carriers with the anchored nanoparticles for chemical looping dry reforming of methane. Fuel 2023, 349, 128771.

https://www.sciencedirect.com/science/article/pii/S0016236123013844?via%3Dihub

4. H. Liu, J. Zhang, J. Wei, Mn and Mg synergistically stabilized CaO as an effective thermochemical material for solar energy storage. Sol. Energy Mater Sol. Cells 2023, 252, 112202.

https://www.sciencedirect.com/science/article/abs/pii/S0927024823000235

5. X. Wang, S. Abanades, S. Chuayboon, J. Zhang, J. Wei. Solar-driven chemical looping reforming of methane over SrFeO3-δ-Ca0.5Mn0.5O nanocomposite Foam. Int. J. Hydrogen Energy 2022, 47, 33664-33676.

https://doi.org/10.1016/j.ijhydene.2022.07.241

6. X. Wang, L. Yang, X. Ji, Y. Gao, F. Li, J. Zhang, J. Wei. Reduction kinetics of SrFeO3−δ/CaO∙MnO nanocomposite as effective oxygen carrier for chemical looping partial oxidation of methane. Front. Chem. Sci. Eng. 2022, 16, 1726-1734

https://doi.org/10.1007/s11705-022-2188-5

7. Z. Zhao, J. Liu, X. Xi, Y. Wu, J. Zhang.  Synthesis of cellular silica using microbubbles as templates. Nanomaterials 2022, 12, 2794.

https://doi.org/10.3390/nano12162794

8. X. Ji, Y. Liu, J. Liu, J. Zhang. Na2WO4-tuned manganese ore as a high-effective redox catalyst for selective hydrogen combustion in the presence of methane and benzene, Appl. Catal. B 2022, 307, 121194.

https://www.sciencedirect.com/science/article/pii/S0926337322001345

9. Y. Liu, H. Liu, X. Wang, X. Ji, J. Wei, J. Zhang. Orthogonal preparation of SrFeO3-δ nanocomposites as effective oxygen transfer agents for chemical-looping steam methane reforming, Energy & Fuels 2021, 35, 17848-17860. https://pubs.acs.org/doi/10.1021/acs.energyfuels.1c02357

10. C. Huo, X. Tian, C. Chen, J. Zhang, Y. Nan, Q. Zhong. X. Huang, J. Hu, D. Li. Hierarchically porous alumina catalyst carrier with biomimetic vein structure prepared by direct ink writing, J. Eur. Ceram. Soc. 2021, 41, 4231-4241.

https://www.sciencedirect.com/science/article/pii/S0955221921000996

11. C. Chen, W. Yu, Y. Duan, X. Wang, J. Zhang. Chlorine-promoted perovskite nanocomposite as a high-performance oxygen transfer agent for chemical looping methane-assisted CO2 splitting, Chem. Eng. J. Adv. 2020, 4, 100052.

https://www.sciencedirect.com/science/article/pii/S2666821120300521

12. W. Yu, X. Wang, Y. Liu, J. Wei, J. Zhang. Effect of composition on the redox performance of strontium ferrite nanocomposite, Energy & Fuels 2020, 34, 8644-8652.

13. https://pubs.acs.org/doi/full/10.1021/acs.energyfuels.0c01397

段一菲, 陈存壮, 张军社, 王新赫, 魏进家. 化学链小分子转化研究进展, 中国科学:化学. 2020, 50, 337-365.

https://doi.org/10.1360/SSC-2019-0156

14. J. Zhang, Y. Mao, J. Zhang, J. Tian, M. B. Sullivan, X.-M. Cao, Y. Zeng, F. Li, P. Hu. CO2 reforming of ethanol: density functional theory calculations, microkinetic modeling, and experimental studies. ACS Catal. 2020, 10, 9624-9633.

https://pubs.acs.org/doi/full/10.1021/acscatal.9b05231

15. X. Wang, Y. Liu, K. Liu, J. Zhang, J. Wei. Phosphorus-tuned nickel as high coke-resistant catalyst with high reforming activity. Int. J. Hydrogen Energy 2020, 43, 28325-28336.

https://www.sciencedirect.com/science/article/pii/S0360319920327853

16. X. Wang, J. Wei, J. Zhang. Can steam-and CO-rich streams be produced sequentially in the isothermal chemical looping super-dry reforming scheme? ACS Omega 2020, 5, 5401-5406.

https://pubs.acs.org/doi/10.1021/acsomega.9b04464

17. X. Wang, X. Du, W. Yu, J. Wei, J. Zhang. Coproduction of hydrogen and methanol from methane by chemical looping reforming, Ind. Eng. Chem. Res. 2019, 58, 10296-10306.

https://pubs.acs.org/doi/full/10.1021/acs.iecr.9b01695

18. R. B. Dudek, Y. Gao, J. Zhang, F. Li. Manganese-containing redox catalysts for selective hydrogen combustion under a cyclic redox scheme, AIChE J. 2018, 64, 3141-3150.

https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.16173

19. S. Baek, Y. Ahn, J. Zhang, J. Min, H. Lee, J. Lee. Enhanced methane hydrate formation with cyclopentane hydrate seeds, Appl. Energy 2017, 202, 32-41. 

https://www.sciencedirect.com/science/article/pii/S0306261917306128

20. J. Zhang, V. Haribal, F. Li. Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme, Sci. Adv. 2017, 3, e1701184.

https://www.science.org/doi/10.1126/sciadv.1701184

21. A. Shafiefarhood, J. Zhang, L. M. Neal, F. Li. Rh-Promoted mixed oxides for “low-temperature” methane partial oxidation in absences of gaseous oxidants. J. Mater. Chem. A 2017, 5, 11930-11939.

https://pubs.rsc.org/en/content/articlelanding/2017/TA/C7TA01398A

22. J. Zhang, F. Li, Coke-resistant Ni@SiO2 catalyst for dry reforming of methane, Appl. Catal. B 2015, 176-177, 513-521.

https://www.sciencedirect.com/science/article/pii/S0926337315002271

23. J. Zhang, A. Byeon, J. Lee. Boron-doped carbon–iron nanocomposites as efficient oxygen reduction electrocatalysts derived from carbon dioxide, Chem. Commun. 2014, 50, 6349-6352.

https://pubs.rsc.org/en/content/articlelanding/2014/cc/c4cc01903b

24. J. Zhang, J. Lee. Supercapacitor electrodes derived from carbon dioxide, ACS Sus. Chem. Eng. 2014, 1, 8665-8671.

https://pubs.acs.org/doi/full/10.1021/sc400414r

25. J. Zhang, A. Byeon, J. W. Lee. Boron-doped electrocatalysts derived from carbon dioxide, J. Mater. Chem. A 2013, 2, 735-740.

https://pubs.rsc.org/en/content/articlelanding/2013/TA/c3ta11248a

26. X. Ran, J. Zhang, J. Lee. Carbon dioxide-facilitated low-temperature hydrogen desorption from polyaminoborane, J. Phys. Chem. C 2013, 117, 3799-3803.

https://pubs.acs.org/doi/10.1021/jp311315t

27. J. Zhang, J. Lee.  Production of boron-doped porous carbon by the reaction of carbon dioxide with sodium borohydride at atmospheric pressure, Carbon 2013, 53, 216-221.

https://www.sciencedirect.com/science/article/pii/S0008622312008640

28. O. Salako, C. Lo, J. Zhang, A. Couzis, P. Somasundaran, J. Lee. Adsorption of sodium dodecyl sulfate on clathrate hydrates in the presence of salt, J. Colloid Interface Sci. 2012, 386, 333-337.

https://www.sciencedirect.com/science/article/pii/S0021979712007710

29. C. Lo, J. Zhang, P. Somasundaran, J. Lee. Investigations of surfactant effects on gas hydrate formation via infrared spectroscopy, J. Colloid Interface Sci. 2012, 376, 173-176.

https://www.sciencedirect.com/science/article/pii/S0021979712002548

30. J. Zhang, J. Lee, Progress and prospects in thermolytic dehydrogenation of ammonia borane for mobile applications, Korean J. Chem. Eng. 2012, 29, 421-431.

https://link.springer.com/article/10.1007/s11814-012-0032-1

31. J. Zhang, Y. Zhao, X. Guan, R. E. Stark, D. L. Akins, J. Lee. Formation of graphene oxide nanocomposites from carbon dioxide using ammonia borane, J. Phys. Chem. C 2012, 116, 2629-2644.

https://pubs.acs.org/doi/full/10.1021/jp210295e

32. X. Ran, J. Zhang, Y. Zhao, D. L. Akins, J. Lee. Rapid release of 1.5 equivalents of hydrogen from CO2-treated ammonia borane, Int. J. Hydrogen Energy 2012, 37, 3344-3349.

https://linkinghub.elsevier.com/retrieve/pii/S036031991102547X

33. J. Zhang, Y. Zhao, D. L. Akins, J. Lee. Calorimetric and microscopic studies on noncatalytic hydro-thermolysis of ammonia borane, Ind. Eng. Chem. Res. 2011, 50, 10407-10413.

https://pubs.acs.org/doi/10.1021/ie200878u

34. Y. Zhao, J. Zhang, D. L. Akins, J. Lee. Effect of composition on dehydrogenation of mesoporous silica-ammonia borane nanocomposites, Ind. Eng. Chem. Res. 2011, 50, 10024-10028.

https://pubs.acs.org/doi/10.1021/ie200330x

35. J. Zhang, Y. Zhao, D. L. Akins, J. W. Lee, CO2-enhanced thermolytic H2 release from ammonia borane, J. Phys. Chem. C 2011, 115, 8386-8392.

https://pubs.acs.org/doi/10.1021/jp200049y

36. J. Zhang, Y. Zhao, D. L. Akins, J. Lee. Thermal decomposition and spectroscopic studies of preheated ammonia borane, J. Phys. Chem. C 2010, 114, 19529-19534.

https://pubs.acs.org/doi/10.1021/jp105014t

37. J. Zhang, J. Salera, J. Lee. Methane enclathration with sodium dodecyl sulfate: Effect of cyclopentane and two salts on formation kinetics, Ind. Eng. Chem. Res. 2010, 49, 8267-8270.

https://pubs.acs.org/doi/10.1021/ie100759p

38. C. Lo, J. Zhang, P. Somasundaran, S. Lu, A. Couzis, J. Lee. Adsorption of cationic and anionic surfactants on cyclopentane hydrates, J. Phys. Chem. C 2010, 114, 13385-13389.

https://pubs.acs.org/doi/full/10.1021/jp102846d

39. C. Lo, J. Zhang, P. Somasundaran, J. Lee. Raman spectroscopic studies of surfactant effect on the water structure around hydrate guest molecules, J. Phys. Chem. Lett. 2010, 1, 2767-2769.

https://pubs.acs.org/doi/10.1021/jz1009967

40. C. Jones, J. Zhang, J. Lee. Isotope effect on eutectic and hydrate melting temperatures, J. Thermodynamics 2010, 2010, 583041.

https://www.hindawi.com/journals/jther/2010/583041/

41. J. Zhang, C. Lo, P. Somasundaran, J. Lee, Competitive adsorption between SDS and carbonate on tetrahydrofuran hydrates, J. Colloid Interface Sci. 2010, 341, 286-288.

https://www.sciencedirect.com/science/article/pii/S0021979709012673

42. J. Zhang, C. Lo, A. Couzis, P. Somasundaran, J. Wu, J. Lee. Adsorption of kinetic inhibitors on clathrate hydrates, J. Phys. Chem. C 2009, 113, 17418-17420.

https://pubs.acs.org/doi/10.1021/jp907796d

43. J. Zhang, P. Yedlapalli, J. Lee. Thermodynamic analysis of hydrate-based pre-combustion capture of CO2, Chem. Eng. Sci. 2009, 64, 4732-4736.

https://www.sciencedirect.com/science/article/pii/S0009250909003054

44. J. Zhang, J. Lee. Effect of sodium dodecyl sulfate on supercooling point of ice and clathrate hydrates, Energy & Fuels 2009, 23, 3045-3047.

https://pubs.acs.org/doi/10.1021/ef900122n

45. J. Zhang, J. Lee. Enhanced kinetics of CO2 hydrate formation under static conditions, Ind. Eng. Chem. Res. 2009, 48, 5934-5942.

https://pubs.acs.org/doi/10.1021/ie801170u

46. J. Zhang, J. Lee. Inhibition effect of surfactants on CO2 enclathration with cyclopentane in an unstirred batch reactor, Ind. Eng. Chem. Res. 2009, 48, 4703-4709.

https://pubs.acs.org/doi/10.1021/ie8019328

47. J. Zhang, J. Lee. Equilibrium of cyclopentane + CO2 and cyclopentane + H2 hydrates, J. Chem. Eng. Data 2009, 54, 659-661.

https://pubs.acs.org/doi/10.1021/je800219k

48. C. Lo, J. Zhang, P. Somasundaran, S. Lu, A. Couzis, J. Lee. Adsorption of surfactants on two different hydrates, Langmuir 2009, 24, 12723-12726.

https://pubs.acs.org/doi/10.1021/la802362m

49. J. Zhang, C. Lo, P. Somasundaran, A. Couzis, J. Lee. Adsorption of sodium dodecyl sulfate at THF hydrate/liquid interface, J. Phys. Chem. C 2008, 112, 12381-12385.

https://pubs.acs.org/doi/10.1021/jp801963c

50. J. Zhang, S. Lee, J. Lee. Reply to comments by J.-N. Jaubert and S. Vitu on J. Chem. Eng. Data 2008, 53, 1321-1324, J. Chem. Eng. Data 2008, 53, 2002-2002.

https://pubs.acs.org/doi/10.1021/je8003518

51. J. Zhang, S. Lee, J. Lee. Solubility of CO2, N2 and CO2 + N2 gas mixtures in isooctane, J. Chem. Eng. Data 2008, 53, 1321-1324.

https://pubs.acs.org/doi/full/10.1021/je800053f

52. J. Zhang, R. Stanforth, S. O. Pehkonen. Irreversible adsorption of methyl arsenic, arsenate, and phosphate onto goethite in arsenic and phosphate binary systems, J. Colloid Interface Sci. 2008, 317, 35-43.

https://www.sciencedirect.com/science/article/pii/S0021979707013331

53. J. Zhang, R. Stanforth, S. O. Pehkonen. Proton-arsenic adsorption ratios and zeta potential measurements: Implications for protonation of hydroxyls on the goethite surface, J. Colloid Interface Sci. 2007, 315, 13-20.

https://www.sciencedirect.com/science/article/pii/S0021979707008727

54. J. Zhang, S. Lee, J. Lee. Does SDS form micelles at methane hydrate-forming conditions? J. Colloid Interface Sci. 2007, 315, 313-318.

https://www.sciencedirect.com/science/article/pii/S0021979707008016

55. J. Zhang, S. Lee, J. Lee. Kinetics of methane hydrate formation from SDS solution, Ind. Eng. Chem. Res. 2007, 46, 6353-6359.

https://pubs.acs.org/doi/full/10.1021/ie070627r?src=recsys

56. J. Zhang, S. Lee, J. Lee. Solubility of sodium dodecyl sulfate near propane and carbon dioxide hydrate-forming conditions, J. Chem. Eng. Data 2007, 52, 2480-2483.

https://pubs.acs.org/doi/full/10.1021/je700427t

57. J. Zhang, R. Stanforth, S. O. Pehkonen, Effect of replacing a hydroxyl group with a methyl group on arsenic (V) species adsorption on goethite (apha-FeOOH), J. Colloid Interface Sci. 2007, 306, 16-21.

https://www.sciencedirect.com/science/article/pii/S002197970600909X

58. S. Lee, J. Zhang, R. Mehta, T. Woo, J. Lee. Methane hydrate equilibrium and formation kinetics in the presence of an anionic surfactant, J. Phys. Chem. C 2007,111, 4734-4739.

https://pubs.acs.org/doi/10.1021/jp0667590

59. J. Zhang, R. Stanforth. Slow adsorption reaction between arsenic species and goethite (apha-FeOOH): diffusion or heterogeneous surface reaction control, Langmuir 2005, 21, 2895-2901.

https://pubs.acs.org/doi/full/10.1021/la047636e

60. L. Zhou, J. Zhang, Y. Zhou. A simple isotherm equation for modeling the adsorption equilibria on porous solids over wide temperature ranges, Langmuir 2001, 17, 5503-5507.

https://pubs.acs.org/doi/10.1021/la010005p

Blank1

  1. J. W. Lee, P. Yedlapalli and J. S. Zhang, “Equilibrium-Staged Separation of CO2 and H2 Using Hydrate Formation and Dissociation”, Proceedings of the 7th International Conference on Foundations of Computer-Aided Process Design (FOCAPD 2009), Breckenridge, Colorado, June 7-12, 2009.
  2. C. Lo, J. S. Zhang, A. Couzis, P. Somasundaran and J. W. Lee, “Zeta Potential of the Hydrates in SDS Aqueous Solutions”, Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6-10, 2008.
  3. S. S. Fan, J. S. Zhang and J. Y. Wang, “ Progress of Gas Hydrates Studies in China”, Proceedings of the 5th International Conference on Gas Hydrates (ICGH 2005), Trondheim, Norway, June 12-16, 2005.
  4. S. C. Sun, S. S. Fan, D. Q. Liang, J. S. Zhang and Z. P. Feng, “Ultrasonic Experiment on Hydrate Formation of a Synthesis Gas”, Proceedings of the 5th International Conference on Gas Hydrates (ICGH 2005), Trondheim, Norway, June 12-16, 2005.
  5. D. L. Li, S. S. Fan, J. S. Zhang and D. Q. Liang, “Microwave Speed up Dissociation on Natural Gas Hydrate”, Proceedings of the 5th International Conference on Gas Hydrates (ICGH 2005), Trondheim, Norway, June 12-16, 2005.

Blank2

  1. J. S. Zhang, C. Lo, P. Somasundaran and J. W. Lee, “Adsorption of Surfactants and Polymers at the Clathrate Hydrate-Water Interface”, in P. Somasundaran Ed., Encyclopedia of Surface and Colloid Science, DOI: 10.1081/E-ESCS-120045198, Taylor & Francis, New York (2009).