Research Team

Research Interest(研究兴趣): 

Fundamental problems in machine learning and computer vision, especially including:

  • Meta-learning
  • Variational bayesian methods on inverse problems
  • Robust and interpretable deep learning

 

Suggested to Read (推荐阅读):

 

enlightenedUnderstanding meta learning methodology as learning an explicit hyperparameter prediction policy shared by various training tasks:

[0] Jun Shu, Deyu Meng, Zongben Xu. Learning an Explicit Hyperparameter Prediction Policy Conditioned on Tasks. Journal of Machine Learning Research, 2023. 

Meta-Learning-Rate-Schecule Net: Jun Shu, Yanwen Zhu, Qian Zhao, Deyu Meng, and Zongben Xu. MLR-SNet: Transferable LR Schedules for Heterogeneous Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. [code][supplementary material]

enlightenedA new filter parametrization strategy, which not only finely represents 2D filters with zero error when the filter is not rotated, but also largely alleviates the fence-effect-caused quality degradation when the filter is rotated:

[0] Qi Xie, Qian Zhao, Zongben Xu and Deyu Meng. Fourier Series Expansion Based Filter Parametrization for Equivariant Convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. [code][supplementary material]

enlightenedOn modeling non-iid noise with temporal noise prior:

[1] Hongwei Yong, Deyu Meng*, Wangmeng Zuo, Lei Zhang. Robust Online Matrix Factorization for Dynamic Background Subtraction, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017. [arxiv version][code][supplementary material]

Non-i.i.d. spectral noise modeling: Yang Chen, Xiangyong Cao, Qian Zhao, Deyu Meng*, Zongben Xu. Denoising Hyperspectral Image with Non-i.i.d. Noise Structure. IEEE Transactions on Cybernetics. 2017. [arxiv version][Appendix][code]

Non-i.i.d. spatial noise modeling: Xiangyong Cao, Qian Zhao, Deyu Meng*, Yang Chen, Zongben Xu. Robust Low-rank Matrix Factorization under General Mixture Noise Distributions, IEEE Transactions on Image Processing, 2016.[arxiv version][Code][Application on small target detection on infrared images][ICCVConferenceVersion(oral)][supplementary material]

enlightenedOn modeling non-iid noise in multi-view learning:

 [2] Zongsheng Yue, Hongwei Yong, Deyu Meng*, Qian Zhao, Yee Leung, Lei Zhang. Robust Multi-view Subspace Learning with Non-independently and Non-identically Distributed Complex Noise. IEEE Transactions on Neural Networks and Learning Systems, 2019. [supplementary file] [code]

Application to hyper-spectral image restoration: Zongsheng Yue, Deyu Meng, Yanqing Sun, Qian Zhao. Hyperspectral Image Restoration under Complex Multi-Band Noises. Remote Sensing 10 (10), 1631, 2018.

enlightenedOn modeling noise for CT images:

[3] Qi Xie, Dong Zeng, Qian Zhao, Deyu Meng*, Zongben Xu, Jianhua Ma*, Zhenrong Liang, Robust Low-dose CT Sinogram Prepocessing via Exploiting Noise-generating Mechanism, IEEE Transactions on Medical Imaging, 2017.[code][github link][supplementary material]

enlightenedOn modeling noise for Lesion Detection from Fundus Images:

[4] Renzhen Wang, Benzhi Chen, Deyu Meng*, Lisheng Wang. Weakly-Supervised Lesion Detection from Fundus Images, IEEE Transactions on Medical Imaging, 2018.[Demo code]

enlightenedOn theoretical understandings for self-paced learning:

[5] Deyu Meng*, Qian Zhao, Lu Jiang. A Theoretical Understanding of Self-paced Learning. Information Sciences, 414: 319-328, 2017. [arxiv version][slides].

Convergence theory of SPL: Zilu Ma, Shiqi Liu, Deyu Meng*. On Convergence Property of Implicit Self-paced Objective. Information Sciences, 462, 132-140, 2018 [arxiv version]. 

Concave conjugacy theory of SPLShiqi Liu, Zilu Ma, Deyu Meng*Understanding Self-Paced Learning under Concave Conjugacy Theory. Communications in Information and Systems, 18(1), 1-35, 2018 [arxiv version

enlightenedOn applications of self-paced learning to multi-view/modality/feature problems:

[6] Fan Ma, Deyu Meng*, Xuanyi Dong, Yi Yang. Self-paced multi-view co-training. Journal of Machine Learning Research. 2020. [code][ICMLonference version][supplementary material][Application on few shot object detection][Application on weakly supervised object detection][Top 4 on TGSS competition][明报报道][文汇报报道][新浪报道][大公网报道][ChinaDaily报道][东方头条报道][成报报道][港校直通车报道]

[7]Xuanyi Dong, Liang Zheng, Fan Ma, Yi Yang, Deyu Meng*. Few-Example Object Detection with Model Communication. accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.[arxiv version][code][dataset]

enlightenedOn automatical weight function learning for different training data bias cases:

[8] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng*. Meta-Weight-Net: Learning an Explicit Mapping For Sample WeightingNeurIPS, 2019.[code](Both sampling weighting schemes like easy sample emphasizing, e.g., self-paced learning, or hard sample emphasizing, e.g., focal loss, can be seen as special cases of this adaptive meta-learning framework.)

enlightenedOn blind image denoising by a variational denoising network:

[9] Zongsheng Yue,Hongwei Yong, Qian Zhao, Lei Zhang, Deyu Meng*. Variational Denoising Network: Toward Blind Noise Modeling and Removal. NeurIPS, 2019. [code](Our method can learn an approximate posterior to the true posterior with the latent variables including clean image and noise distribution (non-i.i.d.) conditioned on the input noisy image. Using this variational posterior expression, both tasks of blind image denoising and noise estimation can be naturally attained in a unique Bayesian framework.)

Learn A Noise Generator Simulating to Generate Real Image Noise: Zongsheng Yue, Qian Zhao, Lei Zhang, Deyu Meng*. Dual Adversarial Network: Toward Real Noise Removal and Noise Generation. ECCV, 2020.[arxiv][code][supplementary material]

enlightenedOn a new tensor sparsity measure based on Kronecker basis representation:

[10] Qi Xie, Qian Zhao, Deyu Meng*, Zongben Xu. Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery,  IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017. [code for MSI denoising][github link][code for MSI TC and RPCA][github link][conference version][ConferenceVersionCode][Application on CT reconstruction]

enlightenedOn an interpretable deep network for MS/HS fusion:

[11] Qi Xie, Minghao Zhou, Qian Zhao, Zongben Xu, Deyu Meng*. MHF-Net: An Interpretable Deep Network for Multispectral and Hyperspectral Image Fusion.  IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020. [code]

enlightenedOn variational Bayes' method in infinite-dimensional space, which makes the method feasible in general inverse problems like PDEs:

[12] Junxiong Jia, Qian Zhao, Zongben Xu, Deyu Meng*, Yee Leung. Variational Bayes' method for functions with applications to some inverse problems. SIAM Journal on Scientific Computing, 2020. [supplemental file][arxiv version]

Honorary Title

New:

[246] c
 

[245] Yanyi Li, Xi Zhang, Yisi Luo, Deyu Meng. Deep Rank-One Tensor Functional Factorization for Multi-Dimensional Data Recovery. AAAI, 2025.

[244] Xixi Jia, Fangchen Feng, Deyu Meng, Defeng Sun. Globally Q-linear Gauss-Newton Method for Overparameterized Non-convex Matrix Sensing. NeurIPS, 2024. [code]

[243] Yisi Luo, Xile Zhao, Deyu Meng, Revisiting nonlocal self-similarity from continuous representation, IEEE Transactions on Pattern Analysis and Machine Intelligence. 2024. [arxiv version][code]

[242] Jin Cao, Yi Cao, Li Pang, Deyu Meng, Xiangyong Cao. HAIR: Hypernetworks-based All-in-One Image Restoration. arXiv:2408.08091. [pdf] [code]

[241] Kaiyu Li, Xiangyong Cao, Yupeng Deng, Deyu Meng.  SemiCD-VL: Visual-Language Model Guidance Makes Better Semi-supervised Change Detector.  submitted to  IEEE  Transactions on Geoscience and Remote Sensing[pdf] [code]

[240] Datao Tang, Xiangyong Cao, Xingsong Hou, Zhongyuan Jiang, Junmin Liu, Deyu Meng. CRS-Diff: Controllable Generative Remote Sensing Foundation Model.  IEEE  Transactions on Geoscience and Remote Sensing, 2024 [pdf] [code]

[239] Jiangtao Zhang, Zongsheng Yue, Hui Wang, Qian Zhao, Deyu Meng. Blind Image Deconvolution by Generative-based Kernel Prior and Initializer via Latent Encoding. ECCV, 2024. [code]

[238] InfMAE: A Foundation Model in The Infrared Modality. Fangcen Liu, Chenqiang Gao, Yaming Zhang, Junjie Guo, Jinghao Wang, Deyu Meng. ECCV, 2024.

[237] Junjie Guo, Chenqiang Gao, Fangcen Liu, Deyu Meng, Xinbo Gao. DAMSDet: Dynamic Adaptive Multispectral Detection Transformer with Competitive Query Selection and Adaptive Feature Fusion. ECCV, 2024. [code]
[236] Jiangjun Peng, Hailin Wang, Xiangyong Cao, Qian Zhao, Jing Yao, Hongying Zhang, Deyu Meng.  Learnable Representative Coefficient Image Denoiser for Hyperspectral Image. IEEE  Transactions on Geoscience and Remote Sensing, 2024. [code]

[235] Kaiyu Li, Xiangyong Cao, Deyu Meng.  A New Learning Paradigm for Foundation Model-based Remote Sensing Change Detection.  IEEE  Transactions on Geoscience and Remote Sensing, 2024.[code]

[234] Xiangyu Rui, Xiangyong Cao, Li Pang, Zongsheng Yue, Deyu Meng.  Unsupervised Hyperspectral Pansharpening via Low-rank Diffusion Models. Information Fusion, 2024. [code]

[233] Jinhui Hou, Zhiyu Zhu, Junhui Hou, Hui Liu, Huanqiang Zeng, Deyu Meng. Deep Diversity-Enhanced Feature Representation of Hyperspectral Images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2024. [code]

[232] Quanziang Wang, Renzhen Wang, Yuexiang Li, Dong Wei, Hong Wang, Kai Ma, Yefeng Zheng, Deyu Meng. Relational Experience Replay: Continual Learning by Adaptively Tuning Task-wise Relationship. IEEE Transactions on Multimedia. 2024. [code]

[231] Jun-jie Zhang, Deyu Meng. Quantum-inspired analysis of neural network vulnerabilities: The role of conjugate variables in system attacks. National Science Review, nwae141, 2014. [supplementary file][report]

[230] Songbo Wang, Jiadong Lin, Peng Jia, Tun Xu, Xiujuan Li, Yuezhuangnan Liu, Dan Xu, Stephen J. Bush, Deyu Meng, Kai Ye. De novo and somatic structural variant discovery with SVision-pro. Nature Biotechnology, 2024. [report]

[229] Jiahong Fu, Qi Xie, Deyu Meng, Zongben Xu. Rotation Equivariant Proximal Operator for Deep Unfolding Methods in Image Restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024. [arxiv version][code]

[228] Li Pang, Xiangyu Rui, Long Cui, HongZhong Wang, Deyu Meng, Xiangyong Cao. HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved Diffusion Models. CVPR, 2024. [arxiv version][code]

[227] Zongsheng Yue, Hongwei Yong, Qian Zhao, Lei Zhang,  Deyu Meng, Kwan-Yee K. Wong. Deep Variational Network Toward Blind Image Restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024. [arxiv version][code]

[226] Yichen Wu, Long-Kai Huang, Renzhen Wang, Deyu Meng, Ying Wei. Meta Continual Learning Revisited: Implicitly Enhancing Online Hessian Approximation via Variance Reduction. ICLR, 2024. (oral, ourstanding paper hornorable mention)

[225] Hong Wang, Qi Xie, Dong Zeng, Jianhua Ma, Deyu Meng, Yefeng Zhen. OSCNet: Orientation-Shared Convolutional Network for CT Metal Artifact Learning. IEEE Transactions on Medical Imaging. 2024. [code]

 

[224] Jiangjun Peng , Hailin Wang, Xiangyong Cao, Xixi Jia, Hongying Zhang, Deyu Meng. Stable Local-smooth Principal Component Pursuit. SIAM Journal of Imaging Sciences. 2023.

[223] Yisi Luo, Xile Zhao, Zhemin Li, Michael K Ng, Deyu Meng. Low-Rank Tensor Function Representation for Multi-Dimensional Data Recovery. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2023. [arxiv version][code]

[222] Xixi Jia, Hailin Wang, Jiangjun Peng, Xiangchu Feng, Deyu Meng. Preconditioning Matters: Fast Global Convergence of Non-convex Matrix Factorization via Scaled Gradient Descent. NeurIPS, 2023.
[221] Hong Wang, Qi Xie, Dong Zeng, Jianhua Ma, Deyu Meng, Yefeng Zheng. OSCNet: Orientation-Shared Convolutional Network for CT Metal Artifact Learning. IEEE Transactions on Medical Imaging. 2023.

[220] Gang Yang, Xiangyong Cao, Wenzhe Xiao, Man Zhou, Aiping Liu, Xun Chen, Deyu Meng. PanFlowNet: A Flow-Based Deep Network for Pan-sharpening. ICCV, 2023. [code]

[219] Zixiang Zhao, Haowen Bai, Yuanzhi Zhu, Jiangshe Zhang, Shuang Xu, Yulun Zhang, Kai Zhang, Deyu Meng, Radu Timofte, Luc Van Gool. DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion. ICCV, 2023. [code]

[218] Quanziang Wang, Renzhen Wang, Yichen Wu, Xixi Jia, Deyu Meng. CBA: Improving Online Continual Learning via Continual Bias Adaptor. ICCV, 2023. [code]

[217] Yongheng Sun, Fan Wang, Jun Shu, Haifeng Wang, Li Wang, Deyu Meng, Chunfeng Lian. Dual Meta-Learning with Longitudinally Generalized Regularization for One-Shot Brain Tissue Segmentation Across the Human Lifespan. ICCV, 2023. [code]

[216] Huai Chen, Renzhen Wang, Xiuying Wang, Jieyu Li, Qu Fang, Hui Li, Jianhao Bai, Qing Peng, Deyu Meng, Lisheng Wang. Unsupervised Local Discrimination for Medical Images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2023. [arxiv version][code]

[215] Jun Shu, Deyu Meng, Zongben Xu. Learning an Explicit Hyperparameter Prediction Policy Conditioned on Tasks. Journal of Machine Learning Research, 2023. [arxiv version][code]

[214] Junxiong Jia, Yanni Wu, Peijun Li, Deyu Meng. Variational Inverting Network for Statistical Inverse Problems of Partial Differential Equations. Journal of Machine Learning Research, 24:1-60, 2023.

[213] Jun Shu, Xiang Yuan, Deyu Meng, and Zongben Xu. CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023. [code]

[212] Minghao Zhou, Hong Wang, Qian Zhao, Yuexiang Li, Yawen Huang, Deyu Meng, Yefeng Zheng. Interactive Segmentation as Gaussian Process Classification. CVPR, 2023. (highlight paper)

[211] Zhemin Li, Hongxia Wang, Deyu Meng. Regularize implicit neural representation by itself. CVPR, 2023. (highlight paper)

[210] Zeyu Zhu, Xiangyong Cao, man zhou, Junhao Huang, Deyu Meng. Probability-based Global Cross-modal Upsampling for Pan-sharpening. CVPR, 2023.[code]

[209] Chuandong Liu, CHENQIANG GAO, Fangcen Liu, Pengcheng Li, Deyu Meng, Xinbo Gao. Hierarchical Supervision and Shuffle Data Augmentation for 3D Semi-Supervised Object Detection. CVPR, 2023. [code]
[208] Hailin Wang, Jiangjun Peng, Wenjin Qin, Jianjun Wang and Deyu Meng. Guaranteed Tensor Recovery Fused Low-rankness and Smoothness. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023. [code]

[207] Renzhen Wang, Xixi Jia, Quanziang Wang, Yichen Wu, Deyu Meng. Imbalanced Semi-supervised Learning with Bias Adaptive Classifier. ICLR, 2023.[code]
[206] Xinling Liu, Jingyao Hou, Jiangjun Peng, HailinWang, Deyu Meng, Jianjun Wang. Tensor Compressive Sensing Fused Low-rankness and Local-smoothness. AAAI, 2023.

[205] Jinhui Hou, Zhiyu Zhu, Junhui Hou, Hui Liu, Huanqiang Zeng, Deyu Meng. Deep Diversity-Enhanced Feature Representation of Hyperspectral Images, arXiv:2301.06132, 2023. [code]

[204] Shuang Xu, Xiangyong Cao, Jiangjun Peng, Qiao Ke, Cong Ma, and Deyu Meng. Hyperspectral Image Denoising by Asymmetric Noise Modeling. IEEE Transactions on Geoscience and Remote Sensing, 2023. [code]

[203] Jiangjun Peng, Hailin Wang, Xiangyong Cao,  Xinling Liu, Xiangyu Rui, and Deyu Meng. Fast Noise Removal in Hyperspectral Images via Representative Coefficient Total Variation. IEEE Transactions on Geoscience and Remote Sensing, 2023. [code]

[202] Hong Wang, Qi Xie, Qian Zhao, Deyu Meng. RCDNet: An Interpretable Rain Convolutional Dictionary Network for Single Image Deraining. IEEE Transactions on Neural Networks and Learning Systems, 2022. [code]

[201] Hong Wang, Yuexiang Li, Haimiao Zhang, Kai Ma, Deyu Meng, Yefeng Zheng. InDuDoNet+: A Deep Unfolding Dual Domain Network for Metal Artifact Reduction in CT Images. Medical Image Analysis, 2023. [code]

[200] Man Zhou, Hu Yu, Jie Huang, Feng Zhao, Jinwei Gu, Chen Change Loy, Deyu Meng.  Chongyi Li. Deep Fourier Up-Sampling. NeurIPS, 2022. [code]

[199] Zhong-Cheng Wu, Ting-Zhu Huang, Liang-Jian Deng, Hong-Xia Dou, Deyu Meng. Tensor Wheel Decomposition and Application. NeurIPS, 2022.

[198] Jing Yao, Xiangyong Cao, Danfeng Hong, Xin Wu, Deyu Meng, Jocelyn Chanussot, Zongben Xu. Semi-Active Convolutional Neural Networks for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 2022.

[197] Jiangjun Peng, Yao Wang, Hongying Zhang, Jianjun Wang, Deyu Meng. Exact Decomposition of Joint Low Rankness and Local Smoothness Plus Sparse Matrices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. [code][supplementary material]

[196] Ning Xu, Jun Shu, Renyi Zheng, Xin Geng, Deyu Meng, Min-Ling Zhang. Variational Label Enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. [code]

[195] Qi Xie, Qian Zhao, Zongben Xu and Deyu Meng. Fourier Series Expansion Based Filter Parametrization for Equivariant Convolutions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. [code][supplementary material]

[194] Jiahong Fu, Hong Wang, Qi Xie, Qian Zhao, Deyu Meng, and Zongben Xu. KXNet: A Model-Driven Deep Neural Network for Blind Super-Resolution. ECCV (oral), 2022.

[193] Ye Deng, Siqi Hui, Sanping Zhou, Deyu Meng, Jinjun Wang. T-former: An Efficient Transformer for Image Inpainting. ACM MM, 2022.

[192] Hong Wang, Qi Xie, Yuexiang Li, Yawen Huang, Deyu Meng, and Yefeng Zheng. Orientation-Shared Convolution Representation for CT Metal Artifact Learning. MICCAI, 2022.

[191] Jiadong Lin, Songbo Wang, Peter A Audano, Deyu Meng, Jacob I Flores, Walter Kosters, Xiaofei Yang, Peng Jia, Tobias Marschall, Christine R Beck, Kai Ye, SVision: A deep learning approach to resolve complex structural variants, Nature Methods, 2022, Accepted.

[190] Jun Shu, Yanwen Zhu, Qian Zhao, Deyu Meng, and Zongben Xu. MLR-SNet: Transferable LR Schedules for Heterogeneous Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. [code][supplementary material]

[189] Haiquan Qiu, Yao Wang, Deyu Meng, Quanming Yao. Fast and Provable Nonconvex Tensor RPCA, ICML. 2022.

[188] Xin Luo, Hao Wu, Zhi Wang, Jianjun Wang, Deyu Meng. A Novel Approach to Large-Scale Dynamically Weighted Directed Network Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. [code]

[187] Jian Lu, Chen Xu, Zhenwei Hu, Xiaoxia Liu, Qingtang Jiang, DeyuMeng, Zhouchen Lin. A new nonlocal low-rank regularization method with applications to magnetic resonance image denoising. Inverse Problems, 2022.

[186] Zina Li, Yao Wang , Qian Zhao, Shijun Zhang, Deyu Meng. A Tensor-Based Online RPCA Model for Compressive Background Subtraction. IEEE Transactions on Neural Networks and Learning Systems, 2022.

[185] Junxiong Jia, Peijun Li, Deyu Meng. Stein variational gradient descent on infinite-dimensional space and applications to statistical inverse problems. SIAM Journal on Numerical Analysis. 2022.

[184] Hong Wang, Yuexiang Li, Deyu Meng, Yefeng Zheng. Adaptive Convolutional Dictionary Network for CT Metal Artifact Reduction. IJCAI, 2022. [code]

[183] Zina Li, Yao Wang , Qian Zhao , Shijun Zhang, and Deyu Meng. A Tensor-Based Online RPCA Model for Compressive Background Subtraction. IEEE Transactions on Neural Networks and Learning Systems. 2022. [code]

[182] Fang Chen, Chenqiang Gao, Fangcen Liu, Yue Zhao, Yuxi Zhou, Deyu Meng, Wangmeng Zuo. Local Patch Network with Global Attention for Infrared Small Target Detection, IEEE Transactions on Aerospace and Electronic Systems, 2022.
[181] Yisi Luo, Xile Zhao, Deyu Meng, Taixiang Jiang. HLRTF: Hierarchical Low-Rank Tensor Factorization for Inverse Problems in Multi-Dimensional Imaging. CVPR, 2022.
[180] Zongsheng Yue, Qian Zhao, Jianwen Xie, Lei Zhang, Deyu Meng, Kwan-Yee K. Wong. Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel. CVPR, 2022. [code]
[179] Chuandong Liu, Chenqiang Gao, Fangcen Liu, Jiang Liu, Deyu Meng, Xinbo Gao. SS3D: Sparsely-Supervised 3D Object Detection from Point Cloud. CVPR, 2022.

[178] Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, Zhouchen Lin, Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
[177] Hong Wang, Yuexiang Li, Nanjun He, Kai Ma, Deyu Meng, Yefeng Zheng. DICDNet: Deep Interpretable Convolutional Dictionary Network for Metal Artifact Reduction in CT Images. IEEE Transactions on Medical Imaging, 2021.
[176] Yue Zhao, Lingming Zhang, Yang Liu, Deyu Meng, Zhiming Cui, Chenqiang Gao, Xinbo Gao, Chunfeng Lian, Dinggang Shen. Two-Stream Graph Convolutional Network for Intra-oral Scanner Image Segmentation. IEEE Transactions on Medical Imaging, 2021.

[175] Xiangyong Cao, Xueyang Fu, Danfeng Hong, Zongben Xu, Deyu Meng. PanCSC-Net: A Model-Driven Deep Unfolding Method for Pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 2021. [code]

[174] Qian Zhao, Jun Shu, Xiang Yuan, Ziming Liu, and Deyu Meng. A Probabilistic Formulation for Meta-Weight-Net. IEEE Transactions on Neural Networks and Learning Systems, 2021.

[173] Ye Deng, Siqi Hui, Sanping Zhou, Deyu Meng, Jinjun Wang. Learning Contextual Transformer Network for Image Inpainting. ACM MM, 2021.
[172] Mingwen Shao, Le Li, Deyu Meng, Wangmeng Zuo. Uncertainty Guided Multi-Scale Attention Network for Raindrop Removal From a Single Image. IEEE Transactions on Image Processing. 2021.

[171] Zhanyu Ma, Yuping Lai, Jiyang Xie, Deyu Meng, W Bastiaan Kleijn, Jun Guo, Jingyi Yu. Dirichlet Process Mixture of Generalized Inverted Dirichlet Distributions for Positive Vector Data With Extended Variational Inference.IEEE Transactions on Neural Networks and Learning Systems, 2021.

[170] Hong Wang, Yuexiang Li, Haimiao Zhang, Jiawei Chen, Kai Ma, Deyu Meng, and Yefeng Zheng. InDuDoNet: An Interpretable Dual Domain Network for CT Metal Artifact Reduction. MICCAI, 2021.

[169] Zeyu Gao, Bangyang Hong, Xianli Zhang, Yang Li, Chang Jia, Jialun Wu, Chunbao Wang, Deyu Meng, and Chen Li. Instance-based Vision Transformer for Subtyping of Papillary Renal Cell Car9inoma in Histopathological Image. MICCAI, 2021.

[168] Renzhen Wang, Yichen Wu, Huai Chen, Lisheng Wang, and Deyu Meng. Neighbor Matching for Semi-supervised Learning. MICCAI, 2021. (early accept)

[167] Zeyu Gao, Jiangbo Shi, Xianli Zhang, Yang Li, Haichuan Zhang, Jialun Wu, Chunbao Wang, and Deyu Meng, Chen Li. Nuclei Grading of Clear Cell Renal Cell Carcinoma in Histopathological Image by Composite High-Resolution Network. MICCAI, 2021.

[166] Dong Zeng, Lei Wang, Mingrui Geng, Sui Li, Yun Deng, Qi Xie, Danyang Li, Hua Zhang, Yuanqing Li, Zongben Xu, Deyu Meng*, Jianhua Ma*. Noise-Generating-Mechanism-Driven Unsupervised Learning for Low-Dose CT Sinogram Recovery. IEEE Transactions on Radiation and Plasma Medical Sciences. 2021.

[165] Huai Chen, Jieyu Li, Renzhen Wang, Yijie Huang, Fanrui Meng, Deyu Meng, Qing Peng, and Lisheng Wang. Unsupervised Learning of Local Discriminative Representation for Medical Images. Information Processing in Medical Imaging: 27th International Conference, IPMI 2021.

[164] Xiangyong Cao, Xueyang Fu, Chen Xu, Deyu Meng. Deep Spatial-Spectral Global Reasoning Network for Hyperspectral Image Denoising. IEEE Transactions on Geoscience and Remote Sensing. 2021. [code]
[163] Sanping Zhou, Jinjun Wang, Jun Shu, Deyu Meng, Le Wang, Nanning Zheng. Multinetwork Collaborative Feature Learning for Semisupervised Person Reidentification. IEEE Transactions on Neural Networks and Learning Systems. 2021.
[162] Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, Deyu Meng. From Rain Generation to Rain Removal. CVPR, 2021.[code]

[161] Zongsheng Yue, Jianwen Xie, Qian Zhao, Deyu Meng. Semi-Supervised Video Deraining Embedded with Dynamical Rain Generator. CVPR, 2021.[arxiv][code]
[160] Lingming Zhang, Yue Zhao, Deyu Meng, Zhiming Cui, Chenqiang Gao, Xinbo Gao, Chunfeng Lian, Dinggang Shen. TSGCNet: Discriminative Geometric Feature Learning with Two-Stream Graph Convolutional Network for 3D Dental Model Segmentation. CVPR, 2021.
[159] Haiquan Qiu, Yao Wang, Deyu Meng. Effective Snapshot Compressive-spectral Imaging via Deep Denosing and Total Variation Priors. CVPR, 2021.[code][supplementary material]
[158] Xiangyu Rui, Xiangyong Cao, Qie Xie, Zongsheng Yue, Qian Zhao, Deyu Meng. Learning An Explicit Weighting Scheme for Adapting Complex HSI Noise. CVPR, 2021.
[157] Jingyao Hou, Feng Zhang, Haiquan Qiu, Jianjun Wang, Yao Wang, Deyu Meng. Robust Low-tubal-rank Tensor Recovery from Binary Measurements. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2021.

[156] Fangcen Liu, Chenqiang Gao, Yongqing Sun, Yue Zhao, Feng Yang, Anyong Qin, Deyu Meng. Infrared and Visible Cross-Modal Image Retrieval through Shared Features. IEEE Transactions on Circuits and Systems for Video Technology, 2021.

[155] Xu Chen, Chenqiang Gao, Chaoyu Li, Yi Yang and Deyu Meng. Infrared Action Detection in the Dark via Cross-Stream Attention Mechanism. IEEE Transactions on Multimedia, 2021.

[154] Minghan Li, Xiangyong Cao, Qian Zhao, Lei Zhang, Deyu Meng. Online Rain/Snow Removal from Surveillance Videos. IEEE Transactions on Image Processing, 2021. [code][arxiv]

[153] ShuxinWang, Shilei Cao, DongWei, Cong Xie, Kai Ma, LianshengWang, Deyu Meng, Yefeng Zheng. Alternative Baselines for Low-Shot 3D Medical Image Segmentation—An Atlas Perspective. AAAI, 2021.

[152] Yichen Wu, Jun Shu, Qi Xie, Qian Zhao, Deyu Meng. Learning to Purify Noisy Labels via Meta Soft Label Corrector. AAAI, 2021.[code][arxiv paper]

[151] Tian-Hui Ma, Zongben Xu, Deyu Meng, Xi-Le Zhao. Hyperspectral Image Restoration Combining Intrinsic Image Characterization With Robust Noise Modeling, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020. [code]

[150] Tian-Hui Ma, Zongben Xu, Deyu Meng. Remote sensing image denoising via low-rank tensor approximation and robust noise modeling. Remote Sensing 12 (8), 1278, 2020.[code]

[149] 孟德宇,束俊,左旺孟. 元学习的研究进展与发展综述. CCF 2019-2020 中国计算机科学技术发展报告. 中国计算机学会编. 北京:机械工业出版社,2020 (541-578页).

[148] Junxiong Jia, Qian Zhao, Zongben Xu, Deyu Meng, Yee Leung. Variational Bayes' method for functions with applications to some inverse problems. SIAM Journal on Scientific Computing, 2020. [supplemental file][arxiv version]

[147] Renzhen Wang, Shilei Cao, Kai Ma, Yefeng Zheng, Deyu Meng. Pairwise Learning for Medical Image Segmentation. Medical Image Analysis. 2020.[code]

[146] Danfeng Hong, Jing Yao, Deyu Meng, Zongben Xu, Jocelyn Chanussot. Multimodal GANs: Toward Crossmodal Hyperspectral-Multispectral Image Segmentation. IEEE Transactions on Geoscience and Remote Sensing. 2020.

[145] Yuanke Zhang, Jiangjun Peng, Dong Zeng, Qi Xie, Sui Li, Zhaoying Bian, Yongbo Wang, Yong Zhang, Qian Zhao, Hao Zhang, Zhengrong Liang, Hongbing Lu, Deyu Meng, Jianhua Ma. Contrast-Medium Anisotropy-Aware Tensor Total Variation Model for Robust Cerebral Perfusion CT Reconstruction With Low-Dose Scans. IEEE Transactions on Computational Imaging. 2020.

[144] Qi Xie, Minghao Zhou, Qian Zhao, Zongben Xu, Deyu Meng*. MHF-Net: An Interpretable Deep Network for Multispectral and Hyperspectral Image Fusion.  IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020. [code]

[143]  Shuyin Xia, Daowan Peng, Deyu Meng, Changqing Zhang, Guoyin Wang, Elisabeth, Wei Wei, Zizhong Chen. A Fast Adaptive k-means with No Bounds,IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[142] Zongsheng Yue, Qian Zhao, Lei Zhang, Deyu Meng. Dual Adversarial Network: Toward Real Noise Removal and Noise Generation. ECCV, 2020.[arxiv][code][supplementary material]

[141] Jing Yao, Danfeng Hong, Jocelyn Chanussot, Deyu Meng, Xiao Xiang Zhu, Zongben Xu. Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral Super-Resolution. ECCV, 2020.

[140] Hongwei Yong, Jianqiang Huang, Deyu Meng, Xian-Sheng Hua, Lei Zhang. Momentum Batch Normalization for Deep Learning with Small Batch Size. ECCV, 2020.[supplementary material][code]

[139] Yi-Jie Huang, Weiping Liu, Xiuying Wang, Qu Fang, Renzhen Wang, Yi Wang, Huai Chen, Hao Chen, Deyu Meng, and Lisheng Wang. Rectifying Supporting Regions with Mixed and Active Supervision for Rib Fracture Recognition, IEEE Transactions on Medical Imaging, 10.1109/TMI.2020.3006138, 2020.

[138] Jiangjun Peng, Qi Xie, Qian Zhao, Yao Wang, Yee Leung, Deyu Meng. Enhanced 3DTV Regularization and Its Applications on HSI Denoising and Compressed Sensing. IEEE Transactions on Image Processing. 2020.[code][github link]

[137] Dongwei Ren, Wei Shang, Pengfei Zhu, Qinghua Hu, Deyu Meng, Wangmeng Zuo, Single Image Deraining Using Bilateral Recurrent Network, IEEE Transactions on Image Processing, 2020.

[136] Fan Ma, Deyu Meng, Xuanyi Dong, Yi Yang. Self-paced multi-view co-training. Journal of Machine Learning Research. 2020. [code]

[135] Hong Wang, Qi Xie, Qian Zhao, Deyu Meng. A Model-driven Deep Neural Network for Single Image Rain Removal. CVPR, 2020. [supplementary material][code]

[134] Shuxin Wang, Shilei Cao, Dong Wei, Renzhen Wang, Kai Ma, Liansheng Wang, Deyu Meng, Yefeng Zheng. LT-Net: Label Transfer by Learning Reversible Voxel-wise Correspondence for One-shot Medical Image Segmentation. CVPR, 2020.

[133] Dong Zeng, Lisha Yao, Yongshuai Ge, Sui Li, Qi Xie, Hao Zhang, Zhaoying Bian, Qian Zhao, Yuanqing Li, Zongben Xu, Deyu Meng, Jianhua Ma. Full-Spectrum-Knowledge-Aware Tensor Model for Energy-Resolved CT Iterative Reconstruction. IEEE Transactions on Medical Imaging, 2020

[132] Kaidong Wang, Yao Wang, Xi-Le Zhao, Deyu Meng, Jonathan Cheung-Wai Chan and Zongben Xu. Hyperspectral and Multispectral Image Fusion via Nonlocal Low-Rank Tensor Decomposition and Spectral Unmixing. IEEE Transactions on Geoscience and Remote Sensing, 2020.

[131] Xiangyong Cao, Jing Yao, Zongben Xu, Deyu Meng. Hyperspectral Image Classification with Convolutional Neural Network and Active Learning. IEEE Transactions on Geoscience and Remote Sensing, 2020.[code]

[131] Kaidong Wang, Yao Wang, Qian Zhao, Deyu Meng, Member, IEEE, Xiuwu Liao, and Zongben Xu. SPLBoost: An Improved Robust Boosting Algorithm Based on Self-paced Learning. IEEE Transactions on Cybernetics. 2019.

[130] Yiyi Zhou, Rongrong Ji, Xiaoshuai Sun, Jinsong Su, Deyu Meng, Yue Gao, Chunhua Shen. Plenty is Plague: Fine-Grained Learning for Visual Question Answering. IEEE Transactions on Pattern Analyis and Machine Intellegence. 2019.

[129] Jun Xu, Mengyang Yu, Ling Shao, Wangmeng Zuo, Deyu Meng, Lei Zhang, David Zhang. Simplex Representation for Subspace Clustering. IEEE Transactions on Cybernetics, 2019.

[128] Hong Wang, Minghan Li, Yichen Wu, Qian Zhao, Deyu Meng. A Survey on Rain Removal from Video and Single Image, SCIENCE CHINA Information Sciences, https://doi.org/10.1007/s11432-020-3225-9, 2021.  [arxiv] [DerainRepository] (The released repository contains direct links to 74 rain removal papers, source codes of 9 methods for video rain removal and 22 ones for single image rain removal, 27 related project pages, 6 synthetic training sets and 4 real ones, and 4 commonly used image quality metrics.) 

[127] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng*. Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting. NeurIPS, 2019.(Both sampling weighting schemes like easy sample emphasizing, e.g., self-paced learning, or hard sample emphasizing, e.g., focal loss, can be seen as special cases of this adaptive meta-learning framework.) [code][arxiv version]

[126] Zongsheng Yue,Hongwei Yong, Qian Zhao, Lei Zhang, Deyu Meng*. Variational Denoising Network: Toward Blind Noise Modeling and Removal. NeurIPS, 2019.[code][supplementary material]

[125] Renzhen Wang, Shilei Cao, Kai Ma, Deyu Meng, Yefeng Zheng. Pairwise Semantic Segmentation via Conjugate Fully Convolutional Network. MICCAI, 2019. (oral presentation) 

[124] Qian Zhao, Xiangyu Rui, Zhi Han, Deyu Meng. Multilinear Multitask Learning by Rank-product Regularization. IEEE Transations on Neural Networks and Learning System. 2019.

[123] Sanping Zhou, Jinjun Wang, Deyu Meng, Yudong Liang, Yihong Gong, Nanning Zheng. Discriminative Feature Learning with Foreground Attention for Person Re-identification. IEEE Transactions on Image Processing, 2019.

[122] Zongsheng Yue, Hongwei Yong, Deyu Meng, Qian Zhao, Yee Leung, Lei Zhang. Robust Multi-view Subspace Learning with Non-independently and Non-identically Distributed Complex Noise. IEEE Transactions on Neural Networks and Learning Systems, 2019. [supplementary file][code]

[121] Wei Wei, Deyu Meng, Qian Zhao, Cheng Wu, Zongben Xu. Semi-supervised Transfer Learning for Image Rain Removal. CVPR, 2019. [code](Please see more parameter tunning details in the descriptions listed in our released DerainRepository)

[120] Qi Xie, Minghao Zhou, Qian Zhao, Deyu Meng, Wangmeng Zuo, Zongben Xu. Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net. CVPR, 2019. [code]

[119] Dongwei Ren, Wangmeng Zuo, Qinghua Hu, Pengfei Zhu, Deyu Meng. Progressive Image Deraining Networks: A Better and Simpler Baseline. CVPR, 2019.

[118] Jing Yao, Deyu Meng, Qian Zhao, Wenfei Cao, and Zongben Xu. Noncovex-sparsity and Nonlocal-smoothness Based Blind Hyperspectral Unmixing. IEEE Transactions on Image Processing. 2019.

 [117] Renzhen Wang, Benzhi Chen, Deyu Meng, Lisheng Wang. Weakly-Supervised Lesion Detection from Fundus Images, IEEE Transactions on Medical Imaging, 2018.[Demo code]

[116] Z Yue, D Meng, Y Sun, Q Zhao. Hyperspectral Image Restoration under Complex Multi-Band Noises. Remote Sensing 10 (10), 1631, 2018. [code in github]

[115] Dingwen Zhang, Junwei Han, Long Zhao, Deyu Meng. Leveraging Prior-Knowledge for Weakly Supervised Object Detection Under a Collaborative Self-Paced Curriculum Learning Framework. International Journal of Computer Vision, 2018.

[114] Sui Li, Dong Zeng, Jiangjun Peng, Zhaoying Bian, Hao Zhang, Qi Xie, Yongbo Wang, Yuting Liao, Shanli Zhang, Jing Huang, Deyu Meng, Zongben Xu, Jianhua Ma. An Efficient Iterative Cerebral Perfusion CT Reconstruction via Low-Rank Tensor Decomposition with Spatial-Temporal Total Variation Regularization. IEEE transactions on medical imaging, 2018.

[113] Jun Shu, Zongben Xu, Deyu Meng. Small Sample Learning in Big Data Era, arXiv:1808.04572, 2018

[112] Lan Wang, Chenqiang Gao, Luyu Yang, Yue Zhao, Wangmeng Zuo, Deyu Meng. PM-GANs: Discriminative Representation Learning for Action Recognition Using Partial-modalities. ECCV, 2018

[111] Maoguo Gong, Hao Li, Deyu Meng, Qiguang Miao. Decomposition-Based Evolutionary Multi-objective Optimization to Self-paced Learning. IEEE Transactions on Evolutionary Computation, 2018

[110] Xuanyi Dong, Liang Zheng, Fan Ma, Yi Yang, Deyu Meng. Few-Example Object Detection with Model Communication. accepted by  IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.[code][dataset]

[109] Yao Wang, Jiangjun Peng, Qian Zhao, Yee Leung, Xi-Le Zhao, Deyu Meng. Hyperspectral Image Restoration Via Total Variation Regularized Low-Rank Tensor Decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018. [code]

[108] Xi'ai Chen, Zhi Han, Yao Wang, Qian Zhao, Deyu Meng, Lin Lin, Yandong Tang. A General Model for Robust Tensor Factorization with Unknown Noise. IEEE Transactions on Neural Networks and Learning Systems. 2018.

[107] Shiqi Liu, Zilu Ma, Deyu Meng. Understanding Self-Paced Learning under Concave Conjugacy Theory. Communications in Information and Systems, 18(1), 1-35, 2018 [arxiv version

[106] Minghan Li, Wei Wei, Qi Xie, Qian Zhao, Jing Tao, Deyu Meng. Video Rain Streak Removal By Multiscale Convolutional Sparse Coding. CVPR, 2018. [Matlab code][Paper][Dataset][GooglePage]

[105] Jiang Liu, Chenqiang Gao, Deyu Meng. Alexander G Hauptmann, DecideNet: Decide Counts of Varying Density Crowds By Joint Detection and Density Estimation. CVPR, 2018.

[104] Xiangyong Cao, Feng Zhou, Lin Xu, Deyu Meng, Zongben Xu, John Paisley. Hyperspectral Image Classification with Markov Random Fields and a Convolutional Neural Network. IEEE Transactions on Image Processing. 2018.[arxiv version]

[103] Sanping Zhou, Jinjun Wang, Deyu Meng, Xiaomeng Xin, Yubing Li, Yihong Gong, Nanning Zheng. Deep self-paced learning for person re-identification. Pattern Recognition, 2017.

[102] Chenqiang Gao, Lan Wang, Yongxing Xiao, Qian Zhao, Deyu Meng, Infrared Small-dim Target Detection Based on Markov Random Field Guided Noise Modeling, accepted by Pattern Recognition, 2017.

[101] Yao Wang, Deyu Meng, Ming Yuan, Sparse Recovery: From Vectors to Tensors, National Science Review, nwx069, https://doi.org/10.1093/nsr/nwx069, 2017

[100] Qi Xie, Dong Zeng, Qian Zhao, Zongben Xu, Jianhua Ma, Zhenrong Liang, Deyu Meng, Robust Low-dose CT Sinogram Prepocessing via Exploiting Noise-generating Mechanism, IEEE Transactions on Medical Imaging, 2017.[code]

[99] Dong Zeng, Qi Xie, Wenfei Cao, Jiahui Lin, Shanli Zhang, Jing Huang, Zhaoying Bian, Deyu Meng, Zongben Xu, Zhengrong Liang, Wufan Chen, and Jianhua Ma. Low-dose dynamic cerebral perfusion computed tomography reconstruction via Kronecker-basis-representation tensor sparsity regularization. Accepted by IEEE Transactions on Medical Image, 2017.

[98] Shuhang Gu, Deyu Meng, Wangmeng Zuo, Lei Zhang, Joint Convolutional Analysis and Synthesis Sparse Representation for Single Image Layer Separation. ICCV, 2017

[97] Wei Wei, Lixuan Yi, Qi Xie, Qian Zhao, Deyu Meng, Zongben Xu, Should We Encode Rain Streaks in Video as Deterministic or Stochastic? ICCV, 2017.[code]

[96] Qiong Luo, Zhi Han, Xi’ai Chen, Yao Wang, Deyu Meng, Dong Liang, Yandong Tang, Tensor RPCA by Bayesian CP Factorization with Complex Noise. ICCV, 2017

[95] Qi Xie, Qian Zhao, Deyu Meng, Zongben Xu. Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.[code for MSI denoising] [code for MSI TC and RPCA] [conference version][ConferenceVersionCode]

[94] Xuanyi Dong, Deyu Meng, Fan Ma and Yi Yang, A Dual-Network Progressive Approach to Weakly Supervised Object Detection, ACM MM, 2017

[93] Hongwei Yong, Deyu Meng, Wangmeng Zuo, Lei Zhang. Robust Online Matrix Factorization for Dynamic Background Subtraction, accepted in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017. [arxiv version][code][supplementary material]

[92] Lan Wang, Chenqiang Gao, Jiang Liu, Deyu Meng. A novel learning-based frame pooling method for Event Detection. Signal Processing, 2017

[91] Deyu Meng, Qian Zhao, Lu Jiang. A Theoretical Understanding of Self-paced Learning. accepted by Information Sciences, 2017 [arxiv version] [slides].

[90] Fan Ma, Deyu Meng, Qi Xie, Zina Li, Xuanyi Dong, Self-paced Cotraining, ICML, 2017 [supplementary material][code][github link]

[89] Dingwen Zhang, Le Yang, Deyu Meng, Dong Xu and Junwei Han.  A Self-Paced Fine-Tuning Network for Segmenting Objects in Weakly Labelled Videos. CVPR, 2017.

[88] Zilu Ma, Shiqi Liu, Deyu Meng, On Convergence Property of Implicit Self-paced Objective. Information Sciences, 2017 [arxiv version].

[87] Kede Ma, Hui Li, Hongwei Yong, Zhou Wang, Deyu Meng, Lei Zhang. Robust Multi-Exposure Image Fusion: A Structural Patch Decomposition Approach. IEEE Trans. on Image Processing, 2017. [supplementary material][code]

[86] Yang Chen, Xiangyong Cao, Qian Zhao, Deyu Meng, Zongben Xu. Denoising Hyperspectral Image with Non-i.i.d. Noise Structure. IEEE Transactions on Cybernetics. 2017. [arxiv version][Appendix][code]

[85] Liang Lin, Keze Wang, Deyu Meng, Wangmeng Zuo, Lei Zhang. Active Self-Paced Learning for Cost-Effective and Progressive Face Identification. To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017. [arxiv version][code]

[84] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, Lei Zhang, Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising, IEEE Trans. on Image Processing, 2017. [code]

[83] Liantao Wang, Deyu Meng, Xuelei Hu, Jianfeng Lu, Ji Zhao. Instance Annotation via Optimal BoW for Weakly Supervised Object Localization. IEEE Transactions on Cybernetics. 2017.

[82] Xiangyong Cao, Lin Xu, Deyu Meng, Qian Zhao, Zongben Xu. Integration of 3-dimensional discrete wavelet transform and Markov random field for hyperspectral image classification. Neurocomputing 226, 90-100, 2017. [code] (This paper designs a new feature leading to the state-of-the-art performance on hyperspectral image classification.)

[81] Nannan Gu, Mingyu Fan, Deyu Meng. Robust Semi-Supervised Classification for Noisy Labels Based on Self-Paced Learning. IEEE Signal Processing Letters 23 (12), 1806-1810, 2016.

[80] Zongsheng Yue; Deyu Meng; Juan He; Gemeng Zhang. Semi-Supervised Learning through Adaptive Laplacian Graph Trimming. Image and Vision Computing, 2016. [code]

[79] Xiangyong Cao, Qian Zhao, Deyu Meng, Yang Chen, Zongben Xu. Robust Low-rank Matrix Factorization under General Mixture Noise Distributions, IEEE Transactions on Image Processing, 2016.

[78] Zhaoxin Li, Kuanquan Wang, Wangmeng Zuo, Deyu Meng, Lei Zhang. Detail-Preserving and Content-Aware Variational Multi-View Stereo Reconstruction. IEEE Transactions on Image Processing 25(2): 864-877, 2016.

[77] Chenqiang Gao, Yinhe Du, Jiang Liu, Jing Lv, Luyu Yang, Deyu Meng, Alexander G Hauptmann, InfAR dataset: Infrared action recognition at different times, Neurocomputing, 2016. [InfAR Dataset]

[76] Shuhang Gu, Qi Xie, Deyu Meng, Wangmeng Zuo, Xiangchu Feng, Lei Zhang, Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision, International Journal of Computer Vision, 2016. [code for denoising][code for MC][code for RPCA]

[75] Wenfei Cao, Yao Wang, Jian Sun, Deyu Meng, Can Yang, Andrzej Cichocki, Zongben Xu. Total Variation Regularized Tensor RPCA for Background Subtraction from Compressive Measurements. IEEE Transactions on Image Processing, 2016.[Demo code]

[74] Dingwen Zhang, Deyu Meng, Junwei Han. Co-saliency Detection via A Self-paced Multiple-instance Learning FrameworkIEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.

[73] Junwei Liang, Lu Jiang, Deyu Meng and Alex Hauptmann, Learning to Detect Concepts from Webly-Labeled Video DataInternational Joint Conference on Artificial Intelligence (IJCAI), 2016.

[72] Dingwen Zhang, Deyu Meng, Long Zhao and Junwei Han, Bridging Saliency Detection to Weakly Supervised Object Detection Based on Self-paced Curriculum Learning. International Joint Conference on Artificial Intelligence (IJCAI), 2016.

[71] Te Pi, Xi Li, Zhongfei Zhang, Deyu Meng, Fei Wu, Jun Xiao and Yueting Zhuang, Self-Paced Boost Learning for Classification. International Joint Conference on Artificial Intelligence (IJCAI), 2016.

[70] Shoou-I Yu, Deyu Meng, Wangmeng Zuo, Alexander G. Hauptmann, The Solution Path Algorithm for Identity-Aware Multi-Object Tracking. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[69] Qi Xie, Qian Zhao, Deyu Meng, Zongben Xu, Shuhang Gu, Wangmeng Zuo and Lei Zhang. Multispectral images denoising by intrinsic tensor sparsity regularization. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [supplementary material] [Matlab code]

[68] Xi’ai Chen, Zhi Han, Yao Wang, Qian Zhao, Deyu Meng and Yandong Tang. Robust tensor factorization with unknown noise. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016

[67] Jiang Liu, Chenqiang Gao, Deyu Meng, Wangmeng Zuo, Two-Stream Contextualized CNN for Fine-Grained Image Classification. AAAI, 2016 (student paper).

[66] Hao Li, Maoguo Gong, Deyu Meng, Qiguang Miao. Multi-optimization Self-paced Learning. AAAI, 2016. 

[65] Dingwen Zhang, Deyu Meng, C. Li, Lu Jiang, Qian Zhao, and Junwei Han. A Self-paced Multiple-instance Learning Framework for Co-saliency Detection. ICCV, 2015.

[64] Xiangyong Cao, Yang Chen, Qian Zhao, Deyu Meng, Yao Wang, Dong Wang, Zongben Xu. Low-rank Matrix Factorization under General Mixture Noise Distributions. ICCV (oral), 2015.[supplementary material] [Matlab code] [arxiv version]

[63] Qian Zhao, Deyu Meng, Xu Kong, Qi Xie, Wenfei Cao, Yao Wang, Zongben Xu. A Novel Sparsity Measure for Tensor Recovery, ICCV, 2015. [supplementary material]

[62] Shuhang Gu, Wangmeng Zuo, Qi Xie, Deyu Meng, Xiangchu Feng, Lei Zhang, Convolutional Sparse Coding for Image Super-resolution, ICCV 2015. (State-of-the-art super-resolution result!)

[61] Lu Jiang, Shoou-I Yu, Deyu Meng, Yi Yang, Teruko Mitamura, Alexander Hauptmann. Fast and Accurate Content-based Semantic Search in 100M Internet Videos.  In ACM Multimedia (MM), 2015.

[60] Ji Zhao, Deyu Meng, Jiayi Ma,Density-Based Region Search with Arbitrary Shape for Object Localization. IET Computer Vision: 2015

[59] Lu Jiang, Shoou-I Yu, Deyu Meng, Teruko Mitamura, Alexander Hauptmann. Bridging the Ultimate Semantic Gap: A Semantic Search Engine for Internet Videos. In ACM International Conference on Multimedia Retrieval (ICMR). 2015. [BibTex |supplementary materials | slides | project page] Best paper runner-up 
[featured in] Pittsburgh Supercomputing Center

[58] Yan Yan, Yi Yang, Deyu Meng, Gaowen Liu, Wei Tong, Alexander G. Hauptmann, Nicu Sebe: Event Oriented Dictionary Learning for Complex Event Detection. IEEE Transactions on Image Processing, 24(6):1867-1878, 2015.

[57] Jiang-She Zhang, Nannan Ji, Junmin Liu, Jiyuan Pan, Deyu Meng: Enhancing performance of the backpropagation algorithm via sparse response regularization. Neurocomputing, 153:20-40, 2015.

[56] Yong Xu, Bo Huang, Yuyue Xu, Kai Cao, Chunlan Guo, Deyu Meng. Spatial and Temporal Image Fusion via Regularized Spatial Unmixing. IEEE Geoscience and Remote Sensing Letters, 12(6): 1362-1366, 2015. Matlab code.

[55] Ji Zhao, Deyu Meng. FastMMD: Ensemble of Circular Discrepancy for Efficient Two-Sample Test, Neural Computation, 2015, accepted. Matlab Code. (Our proposed FastMMD method decreases the time complexity of MMD calculation from conventional O(N^2d) to O(Nlog(d))) [arxiv version]

[54] Qian Zhao, Deyu Meng, Zongben Xu, Wangmeng Zuo, Yan Yan. L1-Norm Low-Rank Matrix Factorization by Variational Bayesian Method. IEEE Transactions on Neural Networks and Learning Systems. 2015. [matlab code]

[53] Qian Zhao, Deyu Meng, Zongben Xu, Chenqiang Gao. A recursive divide-and-conquer approach for sparse principal component analysis. Neurocomputing, 2015. accepted

[52] Zhaoxin Li, Kuanquan Wang, Wenyan Jia, Hsin-Chen Chen, Wangmeng Zuo, Deyu Meng, Mingui Sun, Multiview Stereo and Silhouette Fusion via Minimizing Generalized Reprojection Error, Image and Vision Computing, 2015, accepted.

[51] Yan Yan, Yi Yang, Haoquan Shen, Deyu Meng, Gaowen Liu, Alexander Hauptmann, Nicu Sebe. Complex Event Detection via Event Oriented Dictionary Learning. AAAI, 2015.

[50] Qian Zhao, Deyu Meng, Lu Jiang, Qi Xie, Zongben Xu, Alexander Hauptmann. Self-paced Matrix Factorization. AAAI, 2015. Supplementary material.

[49] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, Alexander Hauptmann. Self-paced Curriculum Learning. AAAI, 2015.Supplementary material, slides, code.  

[48] Faqiang Wang, Wangmeng Zuo, Lei Zhang, Deyu Meng, and David Zhang, A Kernel Classification Framework for Metric Learning, IEEE Transactions on Neural Networks and Learning Systems. 2014.

[47] Luyu Yang, Chenqiang Gao, Deyu Meng, Lu Jiang. A Novel Group-sparsity-optimization-based Feature Selection Model for Complex Interaction Recognition. ACCV, 2014.

[46] Lu Jiang, Deyu Meng, Shoou-I Yu, Zhen-Zhong Lan, Shiguang Shan, Alexander Hauptmann.Self-paced Learning with Diversity. NIPS, 2014.Supplementary material, code.

[45] Lu Jiang, Deyu Meng, Teruko Mitamura, Alexander Hauptmann. Easy Samples First: Self-paced Reranking for Zero-Example Multimedia Search. ACM MM. 2014. Slides.

[44] Haoquan Shen, Shoou-I Yu, Yi Yang, Deyu Meng, Alexander Hauptmann. Unsupervised Video Adaptation for Parsing Human Motion. ECCV, 2014. [Project Page] [Code and Dataset] [Demo Video]

[43] Qi Xie, Deyu Meng, Shuhang Gu, Lei Zhang, Wangmeng Zuo, Xiangchu Feng, Zongben Xu. On the optimal solution of weighted nuclear norm minimization, arXiv:1405.6012v1, 2014.

[42] Qian Zhao, Deyu Meng, Zongben Xu, Wangmeng Zuo, Lei Zhang. Robust principal component analysis with complex noiseSupplementary MaterialICML, 2014.

[41] Yi Peng, Deyu Meng, Zongben Xu, Chenqiang Gao, Yi Yang, Biao Zhang. Decomposable Nonlocal Tensor Dictionary Learning for Multispectral Image Denoising. Supplementary Material, CVPR, 2014. Matlab code.

[40] Zhiding Yu, Chunjing Xu, Deyu Meng, et al. Transitive Distance Clustering with K-Means Duality. CVPR, 2014. 

[39] Nannan Gu, Di Wang, Mingyu Fan, Deyu Meng. A kernel-based sparsity preserving method for semi-supervised classification, Neurocomputing, accepted, 2014.

[38] Chenqiang Gao, Deyu Meng, Wei Tong, Yi Yang, Yang Cai, Haoquan Shen, Gaowen Liu, Shicheng Xu, Alexander Hauptmann. Interactive Surveillance Event Detection through Mid-Level Discriminative Representation. ICMR, 2014.
[37] Lu Jiang, Wei Tong, Deyu Meng, Alexander G. Hauptmann.Towards Efficient Learning of Optimal Spatial Bag-of-Words Representations. ICMR, 2014. (Best paper runner up) slides, Please download our code in JS Tiling webpage

[36] Jihua Zhu, Deyu Meng, Zhongyu Li, Shaoyi Du, Zejian Yuan. Robust registration of partially overlapping point sets via genetic algorithm with growth operator. IET Image Processing, accepted, 2014.

[35] Deyu Meng, Biao Zhang, Zongben Xu, Lei Zhang, Chenqiang Gao. Robust Low-Rank Tensor Factorization by Cyclic Weighted Median.Science in China Series F: Information Sciences, accepted, 2014.
[34] Ji Zhao, Deyu Meng. Ensemble of Circular Discrepancy for Efficient Two-Sample Test. NIPS Workshop on Randomized Methods for Machine Learning (RMML2013), Lake Tahoe, Nevada, Dec. 9, 2013.

[33] Chenqiang Gao, Yang Cai, Haoquan Shen, Wei Tong, Yi Yang, Nicolas Ballas, Deyu Meng, Yan Yan, Alex Hauptmann, CMU Informedia @TREVID 2013: Surveillance Event Detection (SED), Carnegie Mellon University, 2013.

[32] Wangmeng Zuo, Deyu Meng, Lei Zhang, Xiangchu Feng, David Zhang. A Generalized Iterated Shrinkage Algorithm for Non-convex Sparse Coding. ICCV, 2013. Supplementary materialMatlab Code.

[31] Deyu Meng, Fernando De la Torre. Robust Matrix Factorization with Unknown Noise. ICCV, 2013.Matlab code.

[30] Deyu Meng, Hengbin Cui, Zongben Xu, Kaili Jing. Following the Entire Solution Path of Sparse Principal Component Analysis by Coordinate-Pairwise Algorithm. Data & Knowledge Engineering, 88: 25-36, 2013. 

[29] Chenqiang Gao, Deyu Meng, Yi Yang, Yongtao Wang, Xiaofang Gao, Alexander G. Hauptmann. Infrared Patch-image Model for Small Target Detection in A Single Image. IEEE Transactions on Image Processing. 22(12): 4996-5009, 2013. Matlab Code 

[28] Deyu Meng, Yee Leung, Zongben Xu. The strong convergence of visual classification method and its applications. Information Sciences. DOI: 10.1016/j.ins.2013.06.028, 2013.

[27] Qian Zhao, Deyu Meng, Zongben Xu. Robust Sparse PCA. Science in China Series F: Information Sciences, accepted, 2013.

[26] Deyu Meng, Zongben Xu, Lei Zhang, Ji Zhao. A cyclic weighted median method for L1 low-rank matrix factorization with missing entries. AAAI 2013. Matlab code

[25] Wenbo Liu, Zhiding Yu, Deyu Meng. Joint recognition/segmentation with cascaded multi-level feature classification and confidence. ICME, 2013.

[24] Yee Leung, Deyu Meng, Zongben Xu. Evaluation of a spatial relationship by the concept of intrinsic spatial distance. Geograhpical Analysis, 45(4):380-400, 2013.

[23] Deyu Meng, Qian Zhao, Yee Leung, Zongben Xu. Learning Dictionary from Signals under Global Sparsity Constraint. Neurocomputing, DOI: 10.1016/j.neucom.2013.03.028. 2013.

[22] Deyu Meng, Yee Leung, Zongben Xu, Passage method for nonlinear dimensionality reduction of data on multi-cluster manifolds, Pattern Recognition. 2013, 46(8) 2175-2186.

[21] Deyu Meng, Yee Leung, Zongben Xu. Detecting intrinsic loops underlying data manifold. IEEE Transactions on Knowledge and Data Engineering. 2013, 25(2) 337-347.

[20] Deyu Meng, Qian Zhao, Zongben Xu. Improve robustness of sparse PCA by L1-norm maximization. Pattern Recognition. 2012, 45(1) 487-497. PDF 

[19] Zongben Xu, Mingwei Dai, Deyu Meng. Fast and efficient strategies for model selection of support vector machines. IEEE Transactions on Systems, Man and Cybernetics, Part B. 2009, 39(5) 1292-1307. Matlab code

[18] Deyu Meng, Yee Leung, Tung Fung, Zongben Xu. Nonlinear dimensionality reduction of data lying on the multi-cluster manifold. IEEE Transactions on Systems, Man and Cybernetics, Part B. 2008, 38(4) 1111-1122.

[17] Deyu Meng, Yee Leung, Zongben Xu. Evaluating nonlinear dimensionality reduction based on its local and global quality assessments, Neurocomputing, 2011, 74(6): 941-948. PDF Matlab code

[16] Deyu Meng, Yee Leung, Zongben Xu, Tung Fung, Qingfu Zhang. Improving geodesic distance estimation based on locally linear assumption. Pattern Recognition Letters. 2008, 29(7) 862-870. PDF Matlab code

[15] Deyu Meng, Zongben Xu, Mingwei Dai. Supervised manifold learning method. Journal of Computer Research and Development. 2007, 44(12) 2072-2077. (In Chinese) PDF Matlab code

[14] Deyu Meng, Nannan Gu, Zongben Xu, Leung Yee, Nonlinear dimensionality reduction of data on loopy manifold. Journal of Software. 2008, 19(11) 2908-2920. (In Chinese) PDF Matlab code

[13] Nannan Gu, Deyu meng, Zongben Xu. Transition curve method for nonlinear dimensionality reduction of data on disconnected manifold. Journal of Software. 2010, 21(8) 1898-1907. (In Chinese)

[12] Deyu Meng, Chen Xu, Zongben Xu, Manifold rebuilding based on Isomap. Journal of Computer. 2009, 33(3) 545-555. (In Chinese) PDF Matlab code
[11] Wenfeng Jing, Deyu Meng, Chen Qiao, Zhiming Peng. Eliminating Vertical Stripe Defects on Silicon Steel Surface by L1/2 Regularization. Mathematical Problems in Engineering, 2011, Article ID 854674, 13 pages,doi:10.1155/2011/854674.

[10] Zhi Han, Deyu Meng, Zongben Xu, Nannan Gu. Incremental alignment manifold learning. Journal of Computer Science and Technology,  2011, 26(1): 153-165.

[9] Deyu Meng, Dong Liang, Yongfa Ling. Genetic algorithm for multi2protocol label switching. Academic Journal of Xi'an Jiaotong University. 2007, 19(2): 121-123.

[8] Yongfa Ling, Deyu Meng and Jijie Zhang. New strategies for collision resolution of multi-access channel. Academic Journal of Xi'an Jiaotong University. 2007, 19(1): 56-59.

[7] Zongben Xu, Jianjin Wang and Deyu Meng. Approximation Bound of Mixture Networks in Lwp Spaces. International Symposium on Neural Networks. 2006, 3971:60-65.

[6] Deyu Meng, Zongben Xu, Nannan Gu and Mingwei Dai. Estimating geodesic distances on locally linear patches. IEEE International Symposium on Signal Processing and Information Technology. 2007: 851-854.  

[5] Wenfeng Jing, Deyu Meng, Mingwei Dai, Zongben Xu. A New Preprocessing Method for Regression Problem. International Symposium on Neural Networks. 2006, 3972:765-770.

[4] Zongben Xu, Deyu Meng and Wenfeng Jing. A new approach for classification: visual simulation point of view. International Symposium on Neural Networks. 2005, 3497: 1-7.

[3] Deyu Meng, Chen Xu and Wenfeng Jing. A New Approach for Regression: Visual Regression Approach. International Conference on Computational intelligence and security. 2005, 3801: 139-144.

[2] Deyu Meng, Wenfeng Jing, Zongben Xu. A More Efficent Preprocessing Method for Support Vector Classification. International Conference on Neural Networks and Brain Proceedings. 2005, 2: 1173-1177.

[1] Deyu Meng, Yee Leung, Tung Fung, Zongben Xu. The strong convergence of visual classification method and its applications on disease diagnosis, International Conference on Pattern Recognition in Bioinformatics, 2008: 83-94. 

一些好玩的写作:

水房歌声

浅谈数学的思维方式

 supplementary material of TNNLS