Research Fields

计算化学、计算材料学基于电子结构(第一原理方法)的多尺度模拟。

研究方向:1、多相反应;2、气体分离;3、计算自动化;4、交互教学软件。

1、多相反应

(1)、应变工程(Strain Engineering)

吸附(局部事件)对应变(全局事件)的响应可能是非线性的甚至是非单调性的(吸附强度可增可减);发现拉伸应变利于CO在Pt表面的氧化。 CO Oxidation over Strained Pt(100) Surface: A DFT Study. Journal of Physical Chemistry C, 2015119 (27), 15500–15505.

吸附物可以分为:对应变敏感的和对应变不敏感的两类。对于对应变不敏感的吸附物,来自金属掺杂和异质结的配体效应会更明显。Strain and Ligand Effects on CO2 Reduction Reactions over Cu–Metal Heterostructure Catalysts. Journal of Physical Chemistry C2017, 121 (40), 22139–22146.

作为催化剂的金属可以分为:对应变敏感的和对应变不敏感的两类。对于对应变敏感的金属,在吸附物和应变的共同作用下,会呈现大的能量(吸附物结合能)和结构的变化(金属原子突起),影响后续反应。Dissociative adsorption of O2 on strained Pt(111). Physical Chemistry Chemical Physics2018, 20, 17927-17933; Coadsorption of CO and O over strained metal surfaces. Chemical Physics Letters2019, 722, 18-25. Screening strain sensitive transition metals using oxygen adsorption. New Journal of Chemistry, 2022, 46, 2178-2188.

(2)、覆盖度效应(Coverage Effect)

任一覆盖度下催化剂表面上都会有大量的局部微反应环境(构型),极少数构型(即< 5%的表面积)决定总的反应速率;推论:重要的往往是少数派。Accurate coverage-dependence incorporated into first-principles kinetic models: Catalytic NO oxidation on Pt(111). Journal of Catalysis 2012, 286 (7), 88-94.

贵金属的主族元素掺杂(PdCx)。稳定结构单元Pd6C的配位方式以及C-C之间各向同性的近距离排斥导致C只在Pd的奇数层均匀分布,偶数层几乎没有。Equilibrium distribution of dissolved carbon in PdCx: DFT and Canonical Monte Carlo simulations. Journal of Physical Chemistry C2021, 125, 38, 20930–20939.

反常的覆盖度效应(O在Al表面),O-O在Al表层和层间都呈现明显的、各向同性的吸引作用,即随着O的覆盖度增加O与Al的结合增强。同时,O在Al团簇吸附的优先位点为配位数多的面上的Al原子而非顶点、边上的Al原子。A comparative DFT study of the oxidation of Al crystals and nanoparticles. Physical Chemistry Chemical Physics, 2021, 23, 24004-24015.

2、气体分离

(1)、二维多孔分离材料

材料的柔性对分离效果影响巨大。 Computational Design Porous Graphenes for Alkane Isomer Separation. Journal of Physical Chemistry C 2017, 121 (18), 10063-10070.

大的刚性孔洞的透过效率可能会低于小的柔性孔洞。Separation selectivity and structural flexibility of graphene-like 2-dimensional membranes. Physical Chemistry Chemical Physics2018, 20, 18192-18199.

门控材料 (Gated Materials):利用强吸附(弱共价键)可逆地调节多孔材料的分离性能。Utilizing SO2 as self-installing gate to regulate the separation properties of porous graphenes. Carbon2018, 134, 145-152. Functional group-directed self-installing doors in porous graphene: a theoretical study. Journal of Materials Science, 2020, 55(12), 5111-5122. Separation Properties of Porous MoS2 Membranes Decorated with Small Molecules. ACS Applied Materials & Interfaces, 2020, 12, 17, 20096–20102.

孔洞修饰(官能团的种类、数量、构型)对孔洞分离性质带来巨大的不确定性。 Uncertainty in the separation properties of functionalized porous graphenes. Applied Surface Science2020, 525, 146524.

孔洞在小的拉应变(< 3%双轴或6%单轴)作用下呈现反直觉的分离性质:同一分子的穿透能垒升高。Porous graphene membranes under small tensile strains exhibit higher percolation barriers to the passing molecules. Surfaces and Interfaces, 2021, 27, 101526.

(2)、小分子在二维材料上的吸附、反应

1T相的二硫化钼在表面吸附原子(基团)后会变为更稳定的1T’相。Ligand induced structure and property changes of 1T-MoS2Physical Chemistry Chemical Physics2019, 21, 9391 - 9398.

1T’相的二硫化钼对于NOx的吸附较强且受应变调节明显。1T’-MoS2, A Promising Candidate for Sensing NOxJournal of Physical Chemistry C2019, 123, 1033910345.

一系列小分子在有缺陷的2H和1T’相的二硫化钼上的吸附、分解。Gas Molecules on Defective and Nonmetal-Doped MoS2 Monolayers. The Journal of Physical Chemistry C, 2020, 124(2), 1511-1522. NO disproportionation over defective 1T′-MoS2 monolayers. Physical Chemistry Chemical Physics, 2020, 22, 13154-13159NO Electroreduction by Transition Metal Dichalcogenides with Chalcogen Vacancies. ChemElectroChem2021, 8, 3113-3122.  Vacancy-triggered and dopant-assisted NO electrocatalytic reduction over MoS2. Physical Chemistry Chemical Physics, 2021, 23, 19872-19883.  CO oxidation over defective and nonmetal doped MoS2 monolayers. Journal of Physics: Condensed Matter, 2021, 33, 165002. The catalytic mechanism of CO2 electrochemical reduction over transition metal-modified 1T'-MoS2 monolayers. Applied Surface Science, 2022, 153001.

 (3)、酸性气体的吸收与分离

确定了单个作用位点在“吸收—解吸”循环中的最佳作用强度(即反应焓变)和每循环最大有效吸收值;按照该作用强度目标寻找最佳的吸收材料。First-principles-guided design of ionic liquids for CO2 capture. Physical Chemistry Chemical Physics 2012, 14 (38), 13163-13170.

证明带单位电荷的阴离子,无论有多少反应位点,最多能够等摩尔地化学吸收。Reactivity of Azole Anions with CO2 from the DFT Perspective. ChemSusChem  2013, 6 (6), 1050-1056.

证明离子液体与CO2反应可能是离子液体(被CO2)活化后的反应,机理不再是单纯的酸碱作用。Multi-molar CO2 capture beyond the direct Lewis acid–base interaction mechanism. Physical Chemistry Chemical Physics, 2020, 22, 11354-11361.

发展了以硼为中心的枝状多位点SO2吸收离子液体。Synthesis and characterization of imidazolium poly(azolyl)borate ionic liquids and their potential application in SO2 absorption. RSC Advances 20166 (70), 66078-66086.

设计了枝状多位点SO2吸收材料;发现了新的吸收材料与SO2的作用模式(插入模式)。Designing tri-branched multiple-site SO2 capture materials. Physical Chemistry Chemical Physics2018, 20 (24), 16704-16711.

利用光控制吸收材料的构型,带来吸收强度的变化。Intramolecular Hydrogen Bonds Enhance Disparity in Reactivity between Isomers of Photoswitchable Sorbents and CO2: A Computational Study. ChemPhysChem 201516 (9), 1926-1932.  

阳离子对CO2和SO2吸收的影响。The role of cations in the interactions between anionic N-heterocycles and SO2Scientific Reports2018, 8 (1), 7284; Cation-assisted interactions between N-heterocycles and CO2Physical Chemistry Chemical Physics 2015,17, 15725-15731.

  

3、计算自动化、数据挖掘、化学信息学

针对柔性枝状大分子与小分子作用,发展了精度递进的自动化构型搜索方法。Exploration of tetra-branched multiple-site SO2 capture materials. Physical Chemistry Chemical Physics2019, 21, 18250-18258. 

利用自动化计算筛选苛刻条件下SO2吸收材料。A theoretical study on screening ionic liquids for SO2 capture under low SO2 partial pressure and high temperature. Journal of Industrial and Engineering Chemistry2021, 98, 161-167.

4、化学教育中的交互软件开发  

刘志广*,吴超,张永策,韩梅. 三维交互网络虚拟原子吸收实验室的构建.《计算机与应用化学》, 2002,19(4): 492-494. 

刘志广*,岳锌,吴超,张永策,王栋. 三种网络虚拟实验室的实现方法与比较.《计算机与应用化学》, 2003, 20(1): 91-93.

 

Blank2

1、西安交通大学启动资金 2012.3-2017.2

2、国家自然科学基金(青年)用激发子散射方法研究新型低维共轭分子体系的电子激发态 2013.1-2015.12, 21203143.

3、国家自然科学基金(面上)设计利用光调控吸着强度的CO2捕获材料 2015.1-2018.12, 21477096.

4、西安交通大学基本科研业务费 应变与电子效应对金属催化剂活性的调控研究 2017.1-2019.12,xjj2017173. “中央高校基本科研业务费专项资金资助”(supported by“the Fundamental Research Funds for the Central Universities”)

5、国家自然科学基金(面上)枝状多位点两性CO2捕获离子液体的理论与实验研究 2022.1-2025.12, 22176152