新书报道
当前位置: 首页 >> 电类优秀教材 >> 正文
Integrated Wireless Propagation Models
发布日期:2015-12-03  浏览

Integrated Wireless Propagation Models

[BOOK DESCRIPTION]

This is fully integrated solutions for managing wireless network coverage, capacity, and costs. Cowritten by Dr. William C. Y. Lee, one of the original pioneers of wireless technology at Bell Labs, this in-depth guide presents accurate, efficient propagation prediction models to meet the growing demands of next-generation wireless networks. All relevant factors, including terrain, atmospheric conditions, buildings, antenna height, indoor environments, and more, are considered. Integrated Wireless Propagation Models discusses popular prediction models and provides complete details on the Lee macrocell, microcell, and in-building models. The final chapter ties the three Lee models together to produce an integrated Lee model that can be applied to all mobile environments. Throughout the book, complex mathematical models are translated into practical, easy-to-implement solutions.Coverage includes: introduction to modeling mobile signals in wireless communications; Macrocell prediction models - area-to-area and point-to-point models; Microcell prediction models for both empirical and deterministic methods; in-building (picocell) prediction models; integrating the three Lee models into the Lee comprehensive model.


[TABLE OF CONTENTS]

Preface                                            xiii
Acknowledgments                                    xvii
1 Introduction to Modeling Mobile Signals in       1   (50)
Wireless Communications
  1.1 Why Write This Book?                         1   (1)
  1.2 Differences Between Free Space               1   (1)
  Communications and Mobile Communications in
  Propagation
  1.3 Treatment of Mobile Signals                  2   (1)
  1.4 History of Developing the Lee Model          2   (1)
  1.5 Basic System Operations                      3   (1)
  1.6 Mobile Radio Signal: Fading Signal           4   (10)
    1.6.1 Conditions of Mobile Signal Reception    4   (1)
    1.6.2 Types of Signal Fading                   5   (1)
    1.6.3 Attributes of Signal Fading              6   (5)
    1.6.4 Flat Fading                              11  (1)
    1.6.5 Signal Fading Caused by Time-Delay       12  (1)
    Spread: Frequency-Selective Fading
    1.6.6 Fading Signal Caused by Doppler Spread   13  (1)
    1.6.7 Short-Term and Long-Term Fading Signal   14  (1)
  1.7 Co-Channel Interference Created from the     14  (8)
  Frequency Reuse Scheme
    1.7.1 Basic Concepts                           14  (3)
    1.7.2 Simulation Model                         17  (1)
    1.7.3 Simulation Result                        18  (4)
  1.8 Propagation Fading Models                    22  (6)
    1.8.1 Rayleigh Fading Model-Short-Term         22  (1)
    Fading Model
    1.8.2 Log-Normal Fading Model-Long-Term        23  (1)
    Fading Model
    1.8.3 Estimating Unbiased Average Noise        24  (3)
    Level
    1.8.4 Rician Distribution                      27  (1)
  1.9 Three Basic Propagation Mechanisms           28  (14)
    1.9.1 Reflection                               28  (6)
    1.9.2 Diffraction                              34  (8)
    1.9.3 Scattering                               42  (1)
  1.10 Applications of the Prediction Models       42  (4)
    1.10.1 Classification of Prediction Models     42  (1)
    1.10.2 Prediction Models for Propagating in    43  (1)
    Areas of Different Sizes
    1.10.3 Aspects for Predicting the Signal       43  (2)
    Strengths in a General Environment
    1.10.4 Predicting the Interference Signals     45  (1)
  1.11 Summary                                     46  (1)
  References                                       46  (2)
  Additional References                            48  (3)
2 Macrocell Prediction Models-Part 1:              51  (48)
Area-to-Area Models
  2.1 Free Space Loss                              51  (1)
  2.2 Plane Earth Model                            52  (1)
  2.3 Young Model                                  53  (2)
  2.4 Bullington Monograms                         55  (3)
    2.4.1 Fading, Refraction from Tropospheric     56  (1)
    Transmission, and Diffraction
    2.4.2 Effects of Buildings and Trees           57  (1)
  2.5 Egli Model-One of the Clutter Factor         58  (2)
  Models
  2.6 The JRC Method                               60  (1)
  2.7 Terrain-Integrated Rough-Earth Model         61  (4)
    2.7.1 Description of TIREM                     61  (1)
    2.7.2 Summary of Land Propagation Formulas     62  (3)
  2.8 Carey Model                                  65  (1)
  2.9 CCIR Model                                   66  (2)
    2.9.1 Description of the Model                 66  (2)
  2.10 Blomquist-Ladell and Edwards-Durkin         68  (2)
  Models
  2.11 Ibrahim-Parsons Model                       70  (5)
    2.11.1 Findings from the Empirical Data        70  (3)
    2.11.2 Two Proposed Models                     73  (2)
  2.12 Okumara-Hata and the Cost 231 Hata Models   75  (6)
    2.12.1 Okumura Method Hata Model               75  (5)
    2.12.2 Cost 231 Hata Model                     80  (1)
  2.13 Walfisch-Bertoni Model                      81  (2)
  2.14 Ikegami Model                               83  (1)
  2.15 Walfisch-Ikegami Model                      84  (3)
  2.16 Flat-Edge Model                             87  (2)
  2.17 ITU Model                                   89  (5)
    2.17.1 ITU-R Recommendation P.1546             90  (2)
    2.17.2 Recommendation ITU-R P.530-9            92  (2)
  2.18 On-Body Model                               94  (1)
    2.18.1 Model 1                                 94  (1)
    2.18.2 Model 2                                 94  (1)
  2.19 Summary                                     95  (1)
  References                                       95  (4)
3 Macrocell Prediction Models-Part 2:              99  (88)
Point-to-Point Models
  3.1 The Lee Model                                99  (58)
    3.1.1 Implementation of the Lee Macrocell      100 (1)
    Model
    3.1.2 The Lee Single Breakpoint Model: A       101 (15)
    Point-to-Point Model
    3.1.3 Variations of the Lee Model              116 (3)
    3.1.4 Effects of Terrain Elevation on the      119 (3)
    Signal Strength Prediction
    3.1.5 Effects of Morphology on the Signal      122 (9)
    Strength Prediction
    3.1.6 Water Enhancement                        131 (7)
    3.1.7 Effect of Antenna Orientation            138 (17)
    3.1.8 Prediction Data Files                    155 (2)
  3.2 Fine-Tuning the Lee Model                    157 (12)
    3.2.1 The Terrain Normalization Method         158 (1)
    3.2.2 Measurement Data Characteristics         159 (1)
    3.2.3 Comparison of Measured and Predicted     160 (1)
    Curve for the Nonobstructive Case
    3.2.4 Comparison of Measured and Predicted     161 (7)
    Curves for the Obstructive Paths
    3.2.5 Conclusion                               168 (1)
  3.3 Enhanced Lee Macrocell Prediction Model      169 (6)
    3.3.1 Introduction                             169 (1)
    3.3.2 The Algorithm                            169 (1)
    3.3.3 Measured versus Predicted Data           170 (4)
    3.3.4 Conclusion                               174 (1)
  3.4 Longley-Rice Model                           175 (3)
    3.4.1 Point-to-Point Model Prediction          175 (1)
    3.4.2 Area Model Prediction                    175 (3)
  3.5 Summary                                      178 (5)
    3.5.1 Ways of Implementation of Models         181 (1)
    3.5.2 Features Among Models                    181 (2)
  References                                       183 (4)
4 Microcell Prediction Models                      187 (74)
  4.1 Introduction                                 187 (1)
  4.2 The Basic Lee Microcell Prediction Model     188 (35)
    4.2.1 Basic Principle and Algorithm            188 (11)
    4.2.2 Input Data for Microcell Prediction      199 (6)
    4.2.3 The Effect of Buildings on Microcell     205 (2)
    Prediction
    4.2.4 The Terrain Effect                       207 (3)
    4.2.5 Prediction Model with Four Situations    210 (2)
    4.2.6 Characteristics of the Measured Data     212 (2)
    4.2.7 Validation of the Model: Measured        214 (5)
    versus Predicted
    4.2.8 Integrating Other Attributes into the    219 (4)
    Model
  4.3 Integration of the Microcell Prediction      223 (9)
  Model and the Macrocell Prediction Model
    4.3.1 The Algorithms for Integrating the       224 (2)
    Two Models
    4.3.2 Treatment of Measured Data               226 (4)
    4.3.3 Validation of the Model: Measured        230 (2)
    versus Predicted
  4.4 Tuning the Model for a Particular Area       232 (6)
    4.4.1 Before Tuning the Lee Microcell Model    232 (1)
    4.4.2 The Tuning Algorithm of the Lee Model    233 (3)
    4.4.3 Verification of the Lee Model            236 (2)
  4.5 Other Microcell Prediction Models            238 (17)
    4.5.1 Introduction                             238 (1)
    4.5.2 Empirical (Path Loss) Models             238 (4)
    4.5.3 Physical Models                          242 (3)
    4.5.4 Non-LOS Model                            245 (3)
    4.5.5 ITU-R P.1411 Model                       248 (7)
  4.6 Summary                                      255 (2)
  References                                       257 (4)
5 In-Building (Picocell) Prediction Models         261 (80)
  5.1 Introduction                                 261 (2)
    5.1.1 Differences from Other Models            261 (1)
    5.1.2 Propagation Impairments and Measure      262 (1)
    of Quality in Indoor Radio Systems
    5.1.3 The Highlights of the Lee In-Building    262 (1)
    Model
  5.2 The Lee In-Building Prediction Model         263 (27)
    5.2.1 Derivation of Close-In Distance for      263 (6)
    the In-Building Model
    5.2.2 The Single-Floor (Same Floor) Model      269 (5)
    5.2.3 Determining Path-Loss Slope in a Room    274 (1)
    5.2.4 Applications of the Lee Model            275 (1)
    5.2.5 Characteristics of the Measured Data     275 (2)
    5.2.6 Validation of the Model (Measured        277 (2)
    versus Predicted)
    5.2.7 Balance Between Coverage and             279 (1)
    Interference
    5.2.8 Analyzing the Lee In-Building            280 (10)
    Prediction Model
  5.3 Enhanced Lee In-Building Model               290 (29)
    5.3.1 Highlight of the Enhanced Lee Model      291 (1)
    5.3.2 Studying Measured Data in various        291 (11)
    Cases
    5.3.3 Comparison of Measured Data and          302 (7)
    Predicted Data
    5.3.4 Using Measured Data to Customize the     309 (9)
    Lee Model
    5.3.5 The General Formula of the Enhanced      318 (1)
    Lee In-Building Model
  5.4 Empirical Path-Loss Models                   319 (6)
    5.4.1 The Motley-Keenan Model (Empirical)      320 (3)
    and a Comparison with the Lee Model
    5.4.2 Ericsson Multiple-Breakpoint Model       323 (2)
    (Empirical)
  5.5 ITU Model                                    325 (3)
    5.5.1 COST 231 Multiwall Model (Empirical)     325 (1)
    5.5.2 ITU-R 1238 (Empirical)                   326 (2)
  5.6 Physical Models-Application of               328 (7)
  Geometrical Theory of Diffraction (GTD)
    5.6.1 Ray-Tracing Model for In-Building        328 (3)
    (Picocell)
    5.6.2 FDTD                                     331 (4)
  5.7 Summary and Conclusions                      335 (1)
  References                                       336 (5)
6 The Lee Comprehensive Model-Integration of       341 (58)
the Three Lee Models
  6.1 Introduction                                 341 (1)
  6.2 Integrating the Three Lee Models             342 (3)
    6.2.1 Validation of the Macrocell Model        343 (2)
    6.2.2 Validation of the Microcell Model        345 (1)
    6.2.3 Validation of the In-Building Model      345 (1)
    (Picocell Model)
  6.3 System Design Aspects Using Different        345 (19)
  Prediction Models
    6.3.1 Preparing to Design a System             345 (1)
    6.3.2 Design Parameters and Input Data         346 (1)
    6.3.3 System Coverage in General               347 (1)
    6.3.4 CDMA Coverage                            347 (5)
    6.3.5 System Design in Special Areas with      352 (12)
    New Technologies
  6.4 User's Menu of the Lee Comprehensive Model   364 (11)
    6.4.1 The Overall System Design Chart from     364 (2)
    the Lee Comprehensive Model
    6.4.2 In-Building Cell-Point-by-Point          366 (4)
    Analysis for the Lee In-Building Model
    6.4.3 Microcell-Point-by-Point Analysis for    370 (2)
    the Lee Microcell Model
    6.4.4 Macrocell-Point-by-Point Analysis for    372 (3)
    the Lee Macrocell Model
  6.5 How to Use Prediction Tools                  375 (6)
    6.5.1 Radio Communication Link-The Channel     376 (1)
    6.5.2 Types of Noise, Losses, and Gain         376 (1)
    6.5.3 Received Signal Power and Noise Power    377 (2)
    6.5.4 Required Information for Calculating     379 (1)
    Link Budget
    6.5.5 Link Budget Analysis                     379 (2)
  6.6 How to Plan and Design a Good Wireless       381 (2)
  System
    6.6.1 Understanding the System Requirement     381 (1)
    6.6.2 Choosing the Right Prediction Model      381 (2)
  6.7 Propagation Prediction on Different          383 (10)
  Transmission Media
    6.7.1 Prediction of Satellite Communication    383 (3)
    Signals
    6.7.2 Prediction of Underwater                 386 (2)
    Communication Signals
    6.7.3 Prediction of Aeronautical               388 (4)
    Communication Signal
    6.7.4 Prediction of Bullet Train               392 (1)
    Communication Signal
    6.7.5 Millimeter Wave Signal                   392 (1)
  6.8 Summary and Conclusions                      393 (2)
  References                                       395 (4)
Index                                              399

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上