张晋熙
-
副教授
博士生导师
硕士生导师
- 教师拼音名称:Zhang Jinxi
- 电子邮箱:b860034159995107841facd237e3348ca298c1f7eb4654425b35f1140cd2417cbb9b5f95d192067e6c66e1ddb1ad60554b0a88caae3d2bddd22391589dcc193c3c6b8e2a2f31cb1448e44a6f2124ffc86847b3bcbfa753e88bcbd6229a3447dee66dfc31e7f56d33029d22f6d1ae45b6b56e82d60b213031586abc86ad22cfdc
- 入职时间:2020-09-16
- 学历:博士研究生毕业
- 办公地点:流程工业综合自动化全国重点实验室411室
- 性别:男
- 联系方式:zhangjx@mail.neu.edu.cn
- 学位:工学博士学位
- 在职信息:在职
- 毕业院校:东北大学
- 学科:控制理论与控制工程
机器人科学与工程
模式识别与智能系统
导航、制导与控制
- 2022-05曾获荣誉当选:辽宁省自然科学一等奖
- 2022-12曾获荣誉当选:中国自动化学会自然科学二等奖
- 2024-05曾获荣誉当选:自主无人系统国际会议最佳论文奖
- 2022-11曾获荣誉当选:中国自动化大会最佳论文奖
- 2021-11曾获荣誉当选:中国电子教育学会优秀博士学位论文奖
- 2022-05曾获荣誉当选:辽宁省优秀博士学位论文奖
- 2021-12曾获荣誉当选:东北大学优秀博士学位论文奖
- 2023-04曾获荣誉当选:东北大学“五四”奖章
访问量:
-
Prescribed performance control of nonlinear systems with unknown sign-switching virtual control coefficients.IEEE/CAA Journal of Automatica Sinica.10.1109/JAS.2025.125135,
-
Low-complexity high-performance control of unknown block-triangular MIMO nonlinear systems.IEEE Transactions on Industrial Electronics.10.1109/TIE.2024.3515269,
-
Robust prescribed performance control of nonlinear systems with unknown odd powers.IEEE Transactions on Cybernetics.10.1109/TCYB.2024.3453948,
-
Robust fault-tolerant dynamic positioning of marine surface vessels with prescribed performance.IEEE Transactions on Intelligent Transportation Systems.10.1109/TITS.2024.3447673,
-
Robust tracking control of unknown nonlinear systems with discontinuous references under output constraints.IEEE Transactions on Systems, Man and Cybernetics: Systems.10.1109/TSMC.2024.3443290,
-
Low-complexity decentralized output-feedback fault-tolerant control of general unknown interconnected nonlinear systems.IEEE Transactions on Automation Science and Engineering.10.1109/TASE.2024.3432131,
-
Distributed optimal resource allocation for high-order nonlinear multi-agent systems over unbalanced digraphs.IEEE Transactions on Control of Network Systems.10.1109/TCNS.2024.3432817,
-
Fault-tolerant prescribed performance control of wheeled mobile robots: A mixed-gain adaption approach.IEEE Transactions on Automatic Control.10.1109/TAC.2024.3365726,
-
Neural network control of underactuated surface vehicles with prescribed trajectory tracking performance.IEEE Transactions on Neural Networks and Learning Systems,35(6):8026-8039
-
Distributed optimal resource allocation with local feasibility constraints for high-order multi-agent systems.IEEE Transactions on Control of Network Systems,11(1):364-374