姚羽(教授)

+

  • 博士生导师  硕士生导师
  • 电子邮箱:
  • 职务:复杂网络系统安全保障技术教育部工程研究中心主任
  • 学历:博士研究生毕业
  • 性别:男
  • 联系方式:yaoyu@mail.neu.edu.cn
  • 学位:博士
  • 毕业院校:东北大学
  • 所属院系:计算机科学与工程学院
  • 学科:
    计算机应用技术
    计算机软件与理论
    计算机系统结构

访问量:

开通时间:..

最后更新时间:..

切换语种:English

手机版
  • 论文成果

An industrial network intrusion detection algorithm based on IGWO-GRU

发布时间:2024-03-20  点击次数:

  • 发表刊物:Cluster Computing
  • 影响因子:4.4
  • 摘要:The openness and interconnectedness of industrial control systems (ICSs) is increasing, leading to a heightened risk of network-based attacks. Although research on industrial intrusion detection is ongoing, current methods often overlook the unique characteristics of industrial control flows. This study introduced an industrial network intrusion detection algorithm based on the improved gray wolf optimizer (IGWO) gated recurrent unit (GRU) model. Starting with the temporal aspects of industrial control network traffic, a simple GRU was chosen as the network model. By integrating the gray wolf optimizer (GWO) with autonomous learning methods, the algorithm could address the slow convergence caused by large volumes of industrial control network traffic. In response to the slow convergence of the GWO and its low optimization accuracy, this study developed the improved gray wolf optimizer (IGWO). By simulating an intrusion detection system (IDS) using datasets from the Natural Gas Pipeline Control System and Secure Water Treatment (SWaT) datasets, the experimental results demonstrated that the IGWO-GRU algorithm exhibited considerable advantages in terms of accuracy, false alarm rate, and false report rate, thereby enhancing the security capabilities of ICSs.
  • 关键字:Industrial control network traffic; Intrusion detection; Gated recurrent unit; Gray wolf optimizer
  • 论文类型:SCI JCR Q2
  • 备注:https://link.springer.com/article/10.1007/s10586-024-04338-1
  • 学科门类:工学
  • 文献类型:JCR 二区
  • 一级学科:计算机科学与技术
  • 是否译文: