研究方向

研究方向1:经典物理体系中拓扑相变和对称性


1)拓扑声学

基于人工结构中对称性调控和新型自由度引入,从机理和实验等方面探索声学体系中量子物态的演化,如绝热通道、非互易传输和拓扑相变等新奇现象。

Demonstration of Acoustic Higher-Order Topological Stiefel-Whitney Semimetal. Phys. Rev. Lett. 132, 197202 (2024).

Acoustic Higher-Order Topological Insulators Induced by Orbital-Interactions. Adv. Mater. 36, 2312421 (2024).

Robust temporal adiabatic passage with perfect frequency conversion between detuned acoustic cavities. Nat. Commun. 15, 1478 (2024).

Orbital topological edge states and phase transitions in one-dimensional acoustic resonator chains. Nat. Commun. 14,8162 (2023).

Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials. Sci. Adv. 7, eabj1198 (2021).

One-way Localized Adiabatic Passage in an Acoustic System. Phys. Rev. Lett. 122, 094501 (2019).

Experimental demonstration of acoustic Chern insulators. Phys. Rev. Lett. 122, 014302 (2019).

Unidirectional wave vector manipulation in two-dimensional space with an all passive acoustic parity-time-symmetric metamaterials crystal. Phys. Rev. Lett. 120(12), 124502 (2018).

Experimental demonstration of anomalous Floquet topological insulator for sound. Nat. Commun. 7, 13368 (2016)

PT -Symmetric Acoustics. Phys. Rev. X 4, 031042 (2014).

Acoustic cloaking by a superlens with single-negative materials. Phys. Rev. Lett. 106, 014301 (2011).


2)基于对称性调控的热扩散研究

基于扩散体系的虚耦合,构建(反)时间-宇称对称性体系,观测对称性破缺前后热传输区别。类比量子体系能带论,探索热扩散体系的拓扑物理。

Observation of parity-time symmetry in diffusive systems. Sci. Adv. 13, 65 (2024).

Observation of non-Hermitian skin effect in thermal diffusion. Sci. Bull. 2095-9273 (2024).

Reciprocity of thermal diffusion in time-modulated systems. Nat. Commun.13, 167 (2022).

3D Printed Meta‐Helmet for Wide‐Angle Thermal Camouflages. Adv. Funct. Mater. 30(28), 2002061 (2020).

Anti-parity-time symmetry in diffusive systems. Science 364(6436), 170-173 (2019).

Thermal meta-device in analogue of zero-index photonics. Nat. Mater. 18(1), 48-54 (2019).



研究方向2:基于人工结构的声场调控及器件


(1)基于人工结构的高频超声透镜探究

基于微纳梯度材料、微纳声栅、回波成像、高次谐波激发等,设计并制备声学超分辨透镜等功能器件,为超声诊断治疗和生物医学超声工程提供新原理。

Loss Compensation and Superresolution in Metamaterials with Excitations at Complex Frequencies. Phys. Rev. X 13, 041024 (2023).

Decorated bacteria-cellulose ultrasonic metasurface. Nat. Commun. 14, 5319 (2023).

Super-resolution acoustic image montage via a biaxial metamaterial lens. Sci. Bull. 65(12), 1022-1029 (2020).

Ultrasonic super-oscillation wave-packets with an acoustic meta-lens. Nat. Commun. 10, 3411 (2019).

Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nat. Commun. 9(1), 1632 (2018).

Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials. Nat. Commun. 7, 11731 (2016).



(2) 基于微纳人工结构的声场精细操控

基于仿生微纳人工结构、硅基微纳人工结构等,研制多功能超薄声学器件,实现高频超声精细调控,用于超声通信和多尺度生物医学相关探索。

Generating Multistructured Ultrasound via Bioinspired Metaskin Patterning for Low-Threshold and Contactless Control of Living Organisms. Adv. Funct. Mater. 32, 2203109 (2022).

An Acoustic Meta‐Skin Insulator. Adv. Mater. 32(37), 2002251 (2020).

Hollow‐Out Patterning Ultrathin Acoustic Metasurfaces for Multifunctionalities Using Soft fiber/Rigid Bead Networks. Adv. Funct. Mater. 1801127 (2018).