学术活动

当前位置是: 首页 -> 学术活动 -> 学术讲座 -> 其他 -> 正文

Empirical Likelihood Inference over Decentralized Networks

发布时间:2024-11-20
主讲人: 王启华
主讲人简介:

王启华,中国科学院数学与系统科学研究院研究员,博士生导师,国家杰出青年科学基金获得者,国家级人才(教育部),中科院“百人计划”入选者。曾在北京大学、香港大学任教。先后访问加拿大、美国、德国及澳大利亚10多所世界一流大学。主要从事复杂数据经验似然统计推断、缺失数据分析、高维数据统计分析、大规模数据分析等方面的研究,出版专著三部,在The Annals of Statistics,  JASA及Biometrika等国际重要刊物发表论文140余篇, 部分工作已产生持久不断的学术影响。

主持人: 张庆昭
讲座简介:
As a nonparametric statistical inference approach, empirical likelihood has been found very useful in numerous occasions.However, it encounters serious computational challenges when applied directly to the modern massive dataset. This article studies empirical likelihood inference over decentralized distributed networks, where the data are locally collected and stored by different nodes. To fully utilize the data, this article fuses Lagrange multipliers calculated in different nodes by employing a penalization technique. The proposed distributed empirical log-likelihood ratio statistic with Lagrange multipliers solved by the penalized function is asymptotically standard chi-squared under regular conditions even for a divergent machine number. Nevertheless, the optimization problem with the fused penalty is still hard to solve in the decentralized distributed network. To address the problem, two alternating direction method of multipliers (ADMM) based algorithms are proposed, which both have simple node-based implementation schemes. Theoretically, this article establishes convergence properties for proposed algorithms, and further proves the linear convergence of the second algorithm in some specific network structures. The proposed methods are evaluated by numerical simulations and illustrated with analyses of census income and Ford gobike datasets.
 
时间: 2024-11-25 (Monday) 16:40-18:00
地点: 经济楼D136
讲座语言: 中文
主办单位: 厦门大学经济学院、王亚南经济研究院、邹至庄经济研究院
承办单位:
期数:
联系人信息: zmn1994@xmu.edu.cn
TOP