科学研究

科学研究

学术讲座
当前位置是: 首页 -> 科学研究 -> 学术讲座 -> 正文

Regularizing High Dimensional Models of Dependence over Data Bits

作者: 发布时间:2024-11-13 点击数:
主讲人:张婉
主讲人简介:

 张婉,中国科学院数学与系统科学研究院预测科学研究中心助理研究员。2024年于北卡罗来纳大学教堂山分校获得统计学博士学位。主要研究方向为非参数统计,高维数据分析与特征选择,可解释机器学习,深度学习理论等。她的研究工作发表在《Journal of Business & Economic Statistics》等。

主持人:洪永淼
讲座简介:

As the complexity of models and the volume of data increase, interpretable methods for modeling complicated dependence are in great need. A recent framework of binary expansion linear effect (BELIEF) provides a “divide and conquer'” approach to decompose any complex form of dependency into small linear regressions over data bits. Although BELIEF can be used to approximate any relationship, it faces an important challenge of high dimensionality. To overcome this obstacle, we propose a novel definition of smoothness for binary interactions through an interesting connection to the sequency of Walsh functions. We investigate this connection and study related theory and algorithms. Based on the connection, we create a regularization of BELIEF under smoothness interpretations. In particular, we propose to model smooth forms of dependency with a generalized lasso model, which we call the sequency lasso, with larger penalty on less smooth terms. The numerical studies demonstrate that the proposed sequency lasso has advantages in clear interpretability and effectiveness for nonlinear and high dimensional data.

时间:2024-11-19 (Tuesday) 16:30-18:00
地点:厦大经济楼D136(线下分会场),中国科学院数学与系统科学研究院南楼N204,腾讯会议 ID:942 539 081
讲座语言:中文
主办单位:厦门大学邹至庄经济研究院、厦门大学-中国科学院计量建模与经济政策研究基础科学中心、中国科学院数学与系统科学研究院预测科学研究中心、中国科学院大学经济与管理学院
承办单位:
期数:“邹至庄讲座”青年学者论坛(第75期)
联系人信息:许老师,电话:2182991,邮箱:ysxu@xmu.edu.cn
TOP