副教授
所在位置 网站首页 > 师资队伍 > 专任教师 > 副教授 > 正文
李思泰

职称:副教授

职务:

学历:博士

电子邮件:sitaili[AT]xmu[DOT]edu[DOT]cn

联系电话:

办 公 室:厦门大学海韵园数学科学学院B楼B508

个人主页:Personal Site: https://www.sitaili.net

         Google Scholar Profile


教育经历 EDUCATION

2018, State University of New York at Buffalo, Ph.D. in Mathematics

2010, Nankai University, B.S. in Mathematics and Applied Mathematics

工作经历 PROFESSIONAL EXPERIENCE

2022/1–Present: Xiamen University, Associate Professor

2021/9–2022/1: Xiamen University, Assistant Professor

2018/9–2021/5: University of Michigan, Van Loo Postdoctoral Assistant Professor


研究方向 RESEARCH INTERESTS

Partial differential equations, Initial value problems, Integrable systems, Inverse scattering transform, Solitons, Asymptotics, Riemann-Hilbert problems, Numerical simulations.


授课情况 TEACHING EXPERIENCE

· Xiamen University:

– Calculus IV

– Calculus I

· University of Michigan:

– MATH115, Calculus I

– MATH217, Linear Algebra (Inquiry-Based Learning class)

– MATH316, Differential Equations

· State University of New York at Buffalo:

– MTH121, Survey of Calculus and Its Applications I

– MTH122, Survey of Calculus and Its Applications II

– MTH131, Mathematical Analysis for Management

– MTH141, College Calculus I

– MTH142, College Calculus II


主持项目:

2023–2025: The National Natural Science Foundation of China (Grant No. 12201526)

2022–2025: The Natural Science Foundation of Fujian Province of China (Grant No. 2022J01032)

2022–2024: Fundamental Research Funds for the Central Universities (Grant No. 20720220040)

论文 PUBLICATIONS

15. S. Li, G. Biondini and G. Kovačič, "On the coupled Maxwell-Bloch system of equations with non-decaying fields at infinity," [arXiv:2405.10117] submitted.

14. S. Li, “A comprehensive study on zero-background solitons of the sharp-line Maxwell-Bloch equations," [arXiv:2402.02166] submitted.

13. S. Li and P. Miller, “On the Maxwell-Bloch System in the Sharp-Line Limit Without Solitons," [arXiv:2105.13293] Comm. Pure Appl. Math., 77, 457–542 (2024).

12. G. Biondini, S. Li and D. Mantzavinos, “Long-Time Asymptotics for the Focusing Nonlinear Schrödinger Equation with Nonzero Boundary Conditions in the Presence of a Discrete Spectrum," [arXiv:1907.09432] Comm. Math. Phys., 382, 1495–1577 (2021).

11. G. Biondini, I. Gabitov, G. Kovačič and S. Li, “Inverse scattering transform for two-level systems with nonzero background," [arXiv:1907.06231] J. Math. Phys., 60, 073510 (2019).

10. G. Biondini, S. Li, D. Mantzavinos and S. Trillo, “Universal behavior of modulationally unstable media," [arXiv:1710.05068] SIAM Rev. 60, 888–908 (2018).

9. M. Conforti, S. Li, G. Biondini, and S. Trillo, “Auto-modulation versus breathers in the nonlinear stage of modulational instability," [arXiv:1808.06989] Opt. Lett. 43 5291–5294 (2018).

8. G. Biondini, S. Li and D. Mantzavinos, “Soliton trapping, transmission and wake in modulationally unstable media," [arXiv:1810.00388] Phys. Rev. E 98, 042211 (2018).

7. S. Li and G. Biondini, “Soliton interactions and degenerate soliton complexes for the focusing nonlinear Schrödinger equation with nonzero background," Eur. Phys. J. Plus 133, 400 (2018).

6. S. Li, G. Biondini, G. Kovačič and I. Gabitov, “Resonant optical pulses on a continuous wave back-ground in two-level active media," [arXiv:1802.07615] Europhys. Lett. 121, 20001 (2018).

5. S. Li, B. Prinari and G. Biondini, “Solitons and rogue waves in spinor Bose-Einstein condensates," [arXiv:1802.06471] Phys. Rev. E 97, 022221 (2018).

4. B. Prinari, F. Demontis, S. Li and T. P. Horikis, “Inverse scattering transform and soliton solutions for a square matrix nonlinear Schrödinger equation with nonzero boundary conditions," Physica D 368, 22–49 (2018).

3. G. Deng, S. Li, G. Biondini, and S. Trillo, “Recurrence due to periodic multisoliton fission in the defocusing nonlinear Schrödinger equation," [arXiv:1711.00134] Phys. Rev. E 96, 052213 (2017).

2. S. Li, G. Biondini and C. Schiebold, “On the degenerate soliton solutions of the focusing nonlinear Schrödinger equation," J. Math. Phys. 58, 033507 (2017).

1. G. Biondini, S. Li and D. Mantzavinos, “Oscillation structure of localized perturbations in modulationally unstable media," Phys. Rev. E 94, 060201(R) (2016).