教育 EDUCATION:
2013/6: 博士,基础数学,美国加州大学圣克鲁兹分校
工作经历WORK EXPERICES:
2023/8-至今: 厦门大学,教授
2018/8-2023/7:厦门大学,副教授
2016/9-2018/7:厦门大学,助理教授
2013/8-2016/6:美国加州大学河滨分校,访问助理教授
研究兴趣RESEARCH INTEREST:
顶点算子代数、无穷维李代数、数学物理
教学TEACHING
厦门大学
2025春季学期:群表示论
2024秋季学期:抽象代数、自然科学中的数学I
2023秋季学期:抽象代数、线性代数II、自然科学中的数学I
2023春季学期: 文科数学拓展、线性代数I
2022秋季学期:自然科学中的数学I、抽象代数
2021秋季学期:抽象代数, 线性代数 I
2020秋季学期:抽象代数
2020春季学期:线性代数I
2019秋季学期:抽象代数
2018春季学期:线性代数I
2017秋季学期:抽象代数
2016秋季学期:顶点算子代数及其表示
厦门大学马来西亚分校
2020/9-2021/2: Abstract Algebra (MAT 211,online course)
2019/4-201/8: Linear Algebra I (MAT 104)
2019/4-201/8: Linear Algebra II (MAT 104)
2017/4-2017/8: Linear Algebra (CST 102)
2017/4-2017/8: Single Variable Calculus (FSC 104)
美国加州大学河滨分校 (2013/9-2016/6)
Math 8B: Introduction to College Mathematics for Sciences
Math 9A: First Year Calculus I
Math 9B: First Year Calculus II
Math 9C: Sequences and Series
Math 10A: Calculus of Several Variables
Math 22: Calculus for Business
Math 31: Applied Linear Algebra
Math 46: Ordinary Differential Equations
Math 133: Geometry
Math 140: Number Systems and Polynomials
美国加州大学圣克鲁兹分校
Math 3: Precalculus (2012 Summer Session)
主持项目GRANTS:
•福建省自然科学基金项目面上项目(Grant No. 2024J01027): 2024.11-2027.11
•厦门市自然科学基金面上项目(Grant No. 3502Z202473007): 2024.07-2027.06
•国家自然科学基金委面上项目 (Grant No.11971396): 2020.01-2023.12.
•福建中青年教育科研项目 (Grant No. JAT170006): 2018.01-2019.12.
•国家自然科学基金委青年项目 (Grant No. 11601452): 2017.01-2019.12.
论文REAREARCH
Preprints
•Fusion products of twisted modules in permutation orbifolds: II, C. Dong, F. Xu, N. Yu, arXiv:2411.15751
Publications
1.On irreducibility of modules of Whittaker type: twisted modules and nonabelian orbifolds, D. Adamovic, C. Lam, V. Tomic, N. Yu, Journal of Pure and Applied Algebra, 229 (2025), no. 1, Paper No. 107840.
2.Permutation orbifolds of vertex operator superalgebras and associative algebras, C. Dong, F. Xu, N. Yu, Science China Mathematics, 68 (2025), no. 1, 19–38.
3.Fusion products of twisted modules in permutation orbifolds, C. Dong, H. Li, F. Xu, N. Yu, Transactions of the American Mathematical Society, 377 (2024), 1717-1760.
4.Extended affine Lie algebras, vertex algebras and equivariant ϕ-coordinated quasi modules, F. Chen, S. Tan, N. Yu, Israel Journal of Mathematics, (2023), 1–54.
5.Irreducible modules of toroidal Lie algebras arising from ϕε-coordinated modules of vertex algebras, F. Chen, H. Li, N. Yu, Journal of Algebra, 611 (2022), 110–148.
6.On a family of vertex operator superalgebras, H. Li, N. Yu, Journal of Algebra, 608 (2022), 290–324.
7.S-matrix in permutation orbifolds, C. Dong, F. Xu, N. Yu, Journal of Algebra, 606 (2022), 851–876.
8.Permutation orbifolds and associative algebras, C. Dong, F. Xu, N. Yu, Science China. Mathematics, 65 (2022), no. 2, 259–268.
9.On irreducibility of modules of Whittaker type for cyclic orbifold vertex algebra, D. Adamovic, C. H. Lam, V. Pedic, N. Yu, Journal of Algebra, 539 (2019), 1–23.
10.6A-Algebra and its representations, C. Dong, X. Jiao, N. Yu, Journal of Algebra, 533 (2019), 174–210.
11.Simple Whittaker modules over free bosonic orbifold vertex operator algebras, J. Hartwig, N. Yu, Proceedings of the American Mathematical Society, 147 (2019), no. 8, 3259–3272.
12.$FI^m$ -modules over Noetherian rings, L. Li, N. Yu, Journal of and Applied Algebra, 223 (2019), no 8, 3436–3460.
13.The 3-permutation orbifold of a lattice vertex operator algebra, C. Dong, F. Xu, N. Yu, Journal of Pure and Applied Algebra, 222 (2018), no. 6, 1316–1336.
14.2-Permutations of lattice vertex operator algebras: Higher rank, C. Dong, F. Xu, N. Yu, Journal of Algebra, 476 (2017), 1–25.
15.Filtrations and Homological degrees of FI-modules, L. Li, N. Yu, Journal of Algebra, 472 (2017), 369-398.
16. 2-Cyclic permutations of lattice vertex operator algebras, C. Dong, F. Xu, N. Yu, Proceedings of the American Mathematical Society, 2016, 144(8), 3207–3220.
17.Fusion Rules for the Vertex Operator Algebra VL2A4 , C. Dong, C. Jiang, Q. Jiang, X. Jiao, N. Yu, Journal of Algebra, 423 (2015), 476–505.
18.\mathbb{Z}-graded Weak Modules and Regularity, C. Dong, N. Yu, Communications in Mathematical Physics, 316 (2012), no. 1, 269–277.
19. Class of representation of skew derivation Lie algebra over quantum torus, N. Yu, Frontiers of Mathematics in China, 3 (2008), no. 1, 119–131.
Links:
My homepage (English version)
MathScinet
Google Scholar
arXiv