教授
所在位置 网站首页 > 师资队伍 > 专任教师 > 教授 > 正文
徐新英

职称:教授

职务:

学历:博士

电子邮件:xinyingxu@xmu.edu.cn

联系电话:

办 公 室:厦门大学海韵园数学科学学院B楼B504

教育经历:

1997.9-2001.7:山东师范大学数学系,数学与应用数学,理学学士学位

2001.9-2004.7:厦门大学数学科学学院,基础数学,理学硕士学位

2004.9-2007.7:厦门大学数学科学学院,基础数学,理学博士学位

工作经历:

2007.7-2013.7:厦门大学数学科学学院,助理教授

2010.8-2012.9:首都师范大学数学科学学院,博士后

2013.8-2023.7:厦门大学数学科学学院,副教授

2015.2-2016.2:访问美国匹兹堡大学王德华教授

2023.8 至今:  厦门大学数学科学学院,教授

研究方向:

流体力学的偏微分方程()

科研项目:

(1)大气海洋本原方程的数学理论研究(2024.1-2027.12),国家自然科学基金面上项目, 项目编号: 12371238(主持)

(2)Hall-MHD方程组解的定性研究(2019.1-2022.12),国家自然科学基金面上项目, 项目编号: 11871407(主持)

(3)磁流体及其相关模型的定性研究(2014.1-2016.12),国家自然科学基金青年项目,项目编号: 11301431(主持)

(4)粘弹性流体动力学模型的数学理论研究(2021.1-2024.12),国家自然科学基金面上项目,项目编号:12071390(参与)

(5)退化抛物方程的可解性及其在可压缩流体力学中的应用(2017.1-2020.12)国家自然科学基金面上项目,项目编号:11671333(参与)

(6)流体动力学若干模型的定性研究(2012.1-2015.12),国家自然科学基金面上项目,项目编号:11171228(参与)

论文:

[1] Xu, Xinying; Zhang, Jianwen; Zhong, Minghui; Initial layer of the incompressible Oldroyd-B model for weakly viscoelastic fluids at the low Weissenberg number. J. Math. Anal. Appl. 533 (2024), no. 1, Paper No. 127995, 17 pp.

[2] Xu, Xinying; Zhang, Jianwen; Zhong, Minghui; On the Cauchy problem of 3D compressible, viscous, heat-conductive Navier-Stokes-Poisson equations subject to large and non-flat doping profile. Calc. Var. Partial Differential Equations 61 (2022), no. 5, Paper No. 161.

[3]Song, Changzhen; Xu, Xinying; Zhang, Jianwen On the Cauchy problem of the full Navier-Stokes equations for three-dimensional compressible viscous heat-conducting flows subject to large external potential force. Indiana Univ. Math. J. 71 (2022), no. 2, 509–560.

[4]Lai, Suhua; Xu, Xinying Global strong solutions for planar full compressible Hall-MHD equations with large initial data. Commun. Math. Sci. Vol. 19, No. 7 (2021), 1913-1943.

[5]Liu, Shengquan; Xu, Xinying; Zhang, Jianwen Global well-posedness of strong solutions with large oscillations and vacuum to the compressible Navier-Stokes-Poisson equations subject to large and non-flat doping profile. J. Differential Equations 269 (2020), no. 10, 8468-8508.

[6]Lai, Suhua; Xu, Xinying; Zhang, Jianwen On the Cauchy problem of compressible full Hall-MHD equations. Z. Angew. Math. Phys. 70 (2019), no. 5, Paper No. 139, 22 pp.

[7]Lv, Boqiang; Shi, Xiaoding; Xu, Xinying Global existence and large-time asymptotic behavior of strong solutions to the compressible magnetohydrodynamic equations with vacuum. Indiana Univ. Math. J. 65 (2016), no. 3, 925-975.

[8]Lian, Ruxu; Xu, Xinying Free boundary value problem for the spherically symmetric compressible Navier-Stokes equations with a nonconstant exterior pressure. Acta Appl. Math. 144 (2016), 35-53.

[9]Liu, Shengquan; Xu, Xinying Global existence and temporal decay for the nematic liquid crystal flows. J. Math. Anal. Appl. 426 (2015), no. 1, 228-246.

[10]Chen, Mingtao; Xu, Xinying; Zhang, Jianwen Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum. Commun. Math. Sci. 13 (2015), no. 1, 225-247.

[11]Chen, Mingtao; Xu, Xinying; Zhang, Jianwen The zero limits of angular and micro-rotational viscosities for the two-dimensional micropolar fluid equations with boundary effect. Z. Angew. Math. Phys. 65 (2014), no. 4, 687-710.

[12]Li, Hailiang; Xu, Xinying; Zhang, Jianwen Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum. SIAM J. Math. Anal. 45 (2013), no. 3, 1356-1387.  

[13]Xu, Xinying A blow-up criterion for 3-D non-resistive conpressible heat-conductive magnetohydrodynamic equations with initial vacuum, Acta Math. Sci. Ser. B (Engl. Ed.) 32 (2012), no. 5, 1883-1900.

[14]Xu, Xinying; Zhang, Jianwen A blow-up criterion for 3-D compressible magnetohydrodynamic equations with vacuum. Math. Models Methods Appl. Sci. 22 (2012), no. 2, 1150010, 23 pp.

[15]Xu, Xinying; Zhang, Jianwen A blow-up criterion for 3-D non-resistive compressible magnetohydrodynamic equations with initial vacuum. Nonlinear Anal. Real World Appl. 12 (2011), no. 6, 3442-3451.

[16]Xu, Xinying; Zhao, Junning On the global existence and uniqueness of solutions to Prandtl's system. Acta. Math. Sin. 2009 Vol. 25 (1): 109-132.  

[17]徐新英 一类退化抛物方程解的性质. 厦门大学学报(自然科学版)2006 45(6)743-745.

[18]徐新英 非牛顿多方渗流方程解的有界性估计. 厦门大学学报(自然科学版)2004 43(4)444-449.

授课情况:

数学分析、偏微分方程、常微分方程、微积分

获奖:

2010年厦门大学青年教学技能大赛三等奖