人员
人员

位置: 首页 > 人员 > 南强青拔 > 正文

吴雅苹

教授

ypwu@xmu.edu.cn

物理大楼 402

个人主页:

研究领域 1.宽禁带半导体光电器件
2.新型量子结构与器件应用
3.石墨烯及类石墨烯二维材料
4.表面界面物理、自旋电子学

教育和工作经历
吴雅苹,厦门大学物理系教授、博士生导师。厦门大学物理系与美国UT-Austin联合培养博士,获微电子学与固体电子学博士学位。国家优青,中国真空学会会员,福建省中学生“英才计划”导师、厦门市物理学会监士,厦门大学“南强青年拔尖人才计划A类人才”。
长期致力于半导体新结构材料与新功能器件研究工作。主持及承担“国家优秀青年科学基金”、“国家自然科学基金重大研究计划”项目、“科技部国家重点研发计划”项目、“国家自然科学基金”面上项目、青年项目、“福建省科技厅对外合作项目”等科技项目二十余项,迄今发表SCI论文七十余篇,SCI他引3000余次,并被多部专业学术论著与多篇综述性论文收录为领域代表性研究成果,获福建省自然科学优秀科学论文奖、厦门大学建设银行奖教金、鹭燕奖教金等,多次受邀国际及国内学术会议邀请报告,授权专利二十余件;指导硕士、博士研究生多人获国家奖学金与校奖学金。
代表性文章或专著
1.Controllable Growth of 2H-1 T′MoS2/ReS2 Heterostructures via Chemical Vapor Deposition, Applied Surface Science, 2022, 572, 151438.
2.Enhanced Valley Splitting in Monolayer WSe2 by Phase Engineering,ACS Nano, 2021, 15, 8244−8251.
3.Review of Anisotropic 2D Materials: Controlled Growth, Optical Anisotropy Modulation, and Photonic Applications, LASER & PHOTONICS REVIEWS, 2021, 15, 2100322.
4.Enhancement of Room-Temperature Photoluminescence and Valley Polarization of Monolayer and Bilayer WS2 via Chiral Plasmonic Coupling, ACS Appl. Mater. Interfaces, 2021, 13, 35097−35104.
5.Facile Synthesis of Two-Dimensional MoS2/WS2 Lateral Heterostructures with Controllable Core/Shell Size Ratio by A One-Step Chemical Vapor Deposition Method, SCIENCE CHINA Physics, Mechanics & Astronomy, 2021, 10, 103711.
6.Controllable Enormous Valley Splitting in Janus WSSe on CrN Monolayer, Journal of Physics D: Applied Physics, 2021, 54, 425304.
7.Enormous Valley Splitting in Monolayer WS2 by Coupling with an N-Terminated GaN Substrate, Physica Status Solidi-Rapid Research Letters, 2021, 15, 2000493.
8.Room-Temperature Spin Injection and Optical Polarization in Nitride-Based Blue and Ultra-Violet Spin Light-Emitting Diodes, Applied Physics Express, 2020, 13(12):0-123001.
9.Strain Manipulation of the Polarized Optical Response in Two-dimensional GaSe Layers, Nanoscale, 2020, 12(6): 4069-4076.
10.Modulating Room Temperature Spin Injection into GaN Towards the High-Efficiency Spin-Light Emitting Diodes, Applied Physics Express, 2020, 13: 043006.
11.Identically Sized Co Quantum Dots on Monolayer WS2 Featuring Ohmic Contact, Physical Review Applied, 2020, 13(2): 024003.
12.Modulation of Spin-Valley Splitting in Two-Dimensional MnPSe3/CrBr3 van der Waals Heterostructure, Journal of Physics D: Applied Physic, 2020, 53(12): 125104.
13.Deeply Exploring Anisotropic Evolution Towards Large-Scale Growth of Monolayer ReS2, ACS Applied Materials & Interfaces, 2019, 12(2): 2862-2870.
14.Polarization-Controllable Plasmonic Enhancement on the Optical Response of Two-Dimensional GaSe Layers, ACS Applied Materials & Interfaces, 2019, 11(21): 19631-19637.
15.Large and Controllable Spin-Valley Splitting in Two-Dimensional WS2/h-VN Heterostructure, Physical Review B, 2019, 100(19): 195435.
16.Regulating the Circular Polarization in Nitride-Based Light-Emitting Diodes Through the Spin Injection, Applied Physics Express, 2019, 12(12): 123005-123005.
17.Hydrothermally Stable ZnAl2O4 Nanocrystals with Controlled Surface Structures for the Design of Long-Lastin and Highly Active/Selective PdZn Catalysts, Green Chemistry, 2019, 21(24): 6574-6578.
18.Plasmon-Enhanced Exciton Emissions and Raman Scattering of CVD-Grown Monolayer WS2 on Ag Nanoprism Arrays, Applied Surface Science, 2019, 504: 144252.
19.Improved Open-Circuit Voltage and Repeatability of Perovskite Cells Based on Double-Layer Lead Halide Precursors Fabricated by a Vapor-Assisted Method , ACS Applied Materials & Interfaces, 2019, 11(27): 24132-24139.
20.Synthesis of Wafer-Scale Monolayer WS2 Crystals toward the Application in Integrated Electronic Devices , ACS Applied Materials & Interfaces, 2019, 11(21): 19381-19387.
21.Elect rically Controllable Magnetic Properties of Fe-doped GaSe Monolayer , Journal of Physics D: Applied Physics, 2019, 52(17): 175001.
22.Modification of the Electronic and Spintronic Properties of Monolayer GaGeTe with a Vertical Electric Field , Journal of Physics D: Applied Physics, 2019, 52(11): 115101.
23.Stress Engineering on the Electronic and Spintronic Properties for a GaSe/HfSe2 van der Waals Heterostructure , Applied Physics Express, 2019, 12(3): 031002.
24.In-plane Anisotropy of Quantum Transport in Artificial Two dimensional Au Lattices, Nano Letters, 2018, 18(3): 1724-1732.
25.Enhanced Photocatalytic Efficiency of ZnO/ZnSe Coaxial Nanowires through Interfacial Strain Modification, Physica E:Low-Dimensional Systems & Nanostructures, 2018, 103: 430-434.
26.Manipulation of Perpendicular Magnetic Anisotropy of Single Fe Atom Adsorbed Graphene via MgO(111) Substrate, Journal of Physics D: Applied Physics, 2018, 51(20): 205001.
27.Tuning the Electronic, Optical, and Magnetic Properties of Monolayer GaSe with a Vertical Electric Field, Physical Review Applied, 2018, 9(4): 044029.
28.Electrically Tunable Magnetic Configuration on Vacancy-Doped GaSe Monolayer, Physics Letters A, 2018, 382(9): 667-672.
29.Strong Anti-Strain Capacity of CoFeB/MgO Interface on Electronic Structure and State Coupling, Chinese Physics B, 2018, 27(1): 017502.
30.Effect of External Strain on the Charge Transfer: Adsorption of Gas Molecules on Monolayer GaSe , Materials Chemistry and Physics, 2017, 198: 49-56.
31.Modification of Spin Electronic Properties of Fe-n/GaSe Monolayer Adsorption System, Acta Physcia Sinica, 2017, 66(16): 166301.
32.Effects of Interlayer Polarization Field on the Band Structures of the WS2/MoS2 and WSe2/MoSe2 Heterostructures , Surface Science,
33.Modulation of Electronic and Optical Anisotropy Properties of ML-GaS by Vertical Electric Field, Nanoscale Research Letters, 2017, 12: 409.
34.Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells , Nanoscale Research Letters, 2017, 12: 160.
35.Effect of Surface Morphology and Magnetic Impurities on the Electronic Structure in Cobalt-Doped BaFe2As2 Superconductors , Nano Letters, 2017, 17(3): 1642-1647.
36.Magnetic Modification of GaSe Monolayer by Absorption of Single Fe Atom, RSC Advanced, 2017, 7(8): 4285-4290.
37.Enhanced Magneto-Optical Effects in Composite Coaxial Nanowires Embedded with Ag Nanoparticles, Scientific Reports, 2016, 6: 29170.
38.Doping Behaviors of Adatoms Adsorbed on Phosphorene , Physica Status Solidi B-Basic Solid State Physics, 2016, 253(6): 1156-1166.
39.Effects of Nitrogen Dopants on the Atomic Step Kinetics and Electronic Structures of O-polar ZnO , Nanoscale, 2016, 8(7): 4381-4386.
40.Evolution of Band Structures in MoS2-Based Homo- and Heterobilayers, Journal of Physics D: Applied Physics, 2016, 49(6): 065304.
41.Effects of Thermally-Induced Changes of Cu Grains on Domain Structure and Electrical Performance of CVD-Grown Graphene, Nanoscale, 2016, 8(2): 930-937.
42.Electro-optic Coefficient Enhancement of AlxGa1-xN via Multiple Field Modulations, ACS Applied Materials & Interfaces, 2015, 7(32): 17707-17712.
43.Theoretical Study of the Interaction of Electron Donor and Acceptor Molecules with Monolayer WS2, Journal of Physics D: Applied Physics, 2015, 48(28): 285303.
44.Au and Ti induced Charge Redistributions on Monolayer WS2 , Chinese Physics B, 2015, 24(7): 77301.
45.Direct Synthesis of Graphene 3D-Coated Cu Nanosilks Network for Antioxidant Transparent Conducting Electrode, Nanoscale, 2015, 7(24): 10613-10621.
46.Effect of Boron in Fe/MgO Interface on Structural Stability and State Coupling, Computational Materials Science, 2015, 101: 138-142.
47.Novel Evolution Process of Zn-Induced Nanoclusters on Si(111)-(7x7) Surface , Nano-Micro Letters, 2015, 7(2): 194-202.
48.Metal-Atom-Induced Charge Redistributions and Their Effects on the Electrical Contacts to WS2 Monolayers, Physica Status Solidi B-Basic Solid State Physics, 2015, 252: 1783-1791.
49.First-Principles Calculations of Perpendicular Magnetic Anisotropy in Fe1-xCox/MgO(001) Thin Films , Nanoscale Research Letters, 2015, 10: 126.
50.Two-Dimensional Au Lattices Featuring Unique Carrier Transport Preference and Wide Forbidden Gap , Nanoscale, 2014, 6(17): 10118-10125.
51.Selective Surface Functionalization at Regions of High Local Curvature in Graphene, Chemical Communications, 2013, 49(7): 677-679.
52.Crystal Structure Evolution of Individual Graphene Islands During CVD Growth on Copper Foil, Advanced Materials, 2013, 25(46): 6744-6751.
53.Tuning the Doping Type and Level of Graphene with Different Gold Configurations, Small, 2012, 8(20): 3129-3136.
54.Growth Mechanism and Controlled Synthesis of AB-Stacked Bilayer Graphene on Cu-Ni Alloy Foils , ACS Nano, 2012, 6(9): 7731-7738.
55.Toward the Controlled Synthesis of Hexagonal Boron Nitride Films, ACS Nano, 2012, 6(7): 6378-6385.
56.Selective-Area Fluorination of Graphene with Fluoropolymer and Laser Irradiation, Nano Letters, 2012, 12(5): 2374-2378.
57.Detection of Sulfur Dioxide Gas with Graphene Field Effect Transistor, Applied Physics Letters, 2012, 100(16): 163114.
58.Low-Temperature Chemical Vapor Deposition Growth of Graphene from Toluene on Electropolished Copper foils, ACS Nano, 2012, 6(3): 2471-2476.
59.Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors, Nano Letters, 2012, 12(4): 1806-1812.
60.van der Waals Epitaxy of InAs Nanowires Vertically Aligned on Single-Layer Graphene, Nano Letters, 2012, 12(3): 1431-1436.
61.An Improved Method for Transferring Graphene Grown by Chemical Vapor Deposition, Nano, 2012, 7(1): 1150001.
62.Graphene Growth Using a Solid Carbon Feedstock and Hydrogen , ACS Nano, 2011, 5(9): 7656-7661.
63.Synthesis and Characterization of Large-Area Graphene and Graphite Films on Commercial Cu-Ni Alloy Foils, Nano Letters, 2011, 11(9): 3519-3525.
代表性专利
1.一种全电学调控的自旋发光探测一体器件及其制备方法, 专利号201810540087.X.
2.一种电场调控的二维自旋电子器件及其制备方法, 专利号201810559006.0.
3.一种管式CVD炉用接头、二维材料及其生长装置和方法, 专利号 201810541023.1.
4.一种具有电场可调极化率的二维旋光器件, 专利号 201820922881.6.
5.一种具有可控极化率的二维自旋电子器件, 专利号 201820923579. 2.
6.矢量强磁场下分子束外延及其原位表征装置,专利号201611236161.6
7.一种产生可控极化率的自旋电流的结构与方法, 专利号201810540985.5
8.一种产生具有电场可调极化率的旋光的结构与方法, 专利号201810541755.0
9.一种极化率可控的可变波长二维旋光器件及其制备方法,专利号201810558544.8
10.一种电可调的各向异性隧穿磁阻结构, 专利号201921002454.7
11.一种电可控的二维自旋电子器件阵列,专利号201920997049.7
12.一种电控二维自旋过滤器件,专利号201920995707.9
13.一种基于自旋注入的电控自旋发光二极管器件,专利号201920995759.6
14.一种具有电场可控极化率的旋光发光二极管器件,专利号201920997067.5
15.一种具有电控极化率的可变波长二维旋光器件,专利号201920995783.X
16.一种柔性二维磁存储阵列,专利号201920997044.4
科研基金及项目
1.国家优秀青年科学基金项目:量子结构生长及其半导体特性研发
2.国家自然科学基金重大研究计划:全同量子点晶格构筑及其量子态间耦合表征
3.科技部国家重点研发计划:半导体新结构材料和新功能器件研究
4.国家自然科学基金面上项目:氮化物/磁性二维材料异质外延及自旋-谷耦合调控应用
5.国家自然科学基金面上项目:III-VI族硫属化物二维材料及其异质结构的可控制备与自旋特性研究
6.国家自然科学基金面上项目,III族氮化物极化调控二维结构材料光电特性及偏振探测应用
7.国家自然科学基金青年项目:不同维度铁磁材料自旋电子结构模拟、表征与调控
8.福建省科技厅对外合作项目:高效率柔性薄膜太阳能电池的制备及性能研究
9.福建省自然科学基金面上项目:二维窄禁带半导体电子自旋特性调控
10.九江市科技局杰出青年人才项目:氮化物半导体自旋调控及其旋光LED应用
姓名 吴雅苹 职称职务 教授
邮箱 ypwu@xmu.edu.cn 办公室 物理大楼 402
电话 个人主页
其他信息 研究方向岗位职责 1.宽禁带半导体光电器件
2.新型量子结构与器件应用
3.石墨烯及类石墨烯二维材料
4.表面界面物理、自旋电子学
教育和工作经历 吴雅苹,厦门大学物理系教授、博士生导师。厦门大学物理系与美国UT-Austin联合培养博士,获微电子学与固体电子学博士学位。国家优青,中国真空学会会员,福建省中学生“英才计划”导师、厦门市物理学会监士,厦门大学“南强青年拔尖人才计划A类人才”。
长期致力于半导体新结构材料与新功能器件研究工作。主持及承担“国家优秀青年科学基金”、“国家自然科学基金重大研究计划”项目、“科技部国家重点研发计划”项目、“国家自然科学基金”面上项目、青年项目、“福建省科技厅对外合作项目”等科技项目二十余项,迄今发表SCI论文七十余篇,SCI他引3000余次,并被多部专业学术论著与多篇综述性论文收录为领域代表性研究成果,获福建省自然科学优秀科学论文奖、厦门大学建设银行奖教金、鹭燕奖教金等,多次受邀国际及国内学术会议邀请报告,授权专利二十余件;指导硕士、博士研究生多人获国家奖学金与校奖学金。
代表性文章或专著 1.Controllable Growth of 2H-1 T′MoS2/ReS2 Heterostructures via Chemical Vapor Deposition, Applied Surface Science, 2022, 572, 151438.
2.Enhanced Valley Splitting in Monolayer WSe2 by Phase Engineering,ACS Nano, 2021, 15, 8244−8251.
3.Review of Anisotropic 2D Materials: Controlled Growth, Optical Anisotropy Modulation, and Photonic Applications, LASER & PHOTONICS REVIEWS, 2021, 15, 2100322.
4.Enhancement of Room-Temperature Photoluminescence and Valley Polarization of Monolayer and Bilayer WS2 via Chiral Plasmonic Coupling, ACS Appl. Mater. Interfaces, 2021, 13, 35097−35104.
5.Facile Synthesis of Two-Dimensional MoS2/WS2 Lateral Heterostructures with Controllable Core/Shell Size Ratio by A One-Step Chemical Vapor Deposition Method, SCIENCE CHINA Physics, Mechanics & Astronomy, 2021, 10, 103711.
6.Controllable Enormous Valley Splitting in Janus WSSe on CrN Monolayer, Journal of Physics D: Applied Physics, 2021, 54, 425304.
7.Enormous Valley Splitting in Monolayer WS2 by Coupling with an N-Terminated GaN Substrate, Physica Status Solidi-Rapid Research Letters, 2021, 15, 2000493.
8.Room-Temperature Spin Injection and Optical Polarization in Nitride-Based Blue and Ultra-Violet Spin Light-Emitting Diodes, Applied Physics Express, 2020, 13(12):0-123001.
9.Strain Manipulation of the Polarized Optical Response in Two-dimensional GaSe Layers, Nanoscale, 2020, 12(6): 4069-4076.
10.Modulating Room Temperature Spin Injection into GaN Towards the High-Efficiency Spin-Light Emitting Diodes, Applied Physics Express, 2020, 13: 043006.
11.Identically Sized Co Quantum Dots on Monolayer WS2 Featuring Ohmic Contact, Physical Review Applied, 2020, 13(2): 024003.
12.Modulation of Spin-Valley Splitting in Two-Dimensional MnPSe3/CrBr3 van der Waals Heterostructure, Journal of Physics D: Applied Physic, 2020, 53(12): 125104.
13.Deeply Exploring Anisotropic Evolution Towards Large-Scale Growth of Monolayer ReS2, ACS Applied Materials & Interfaces, 2019, 12(2): 2862-2870.
14.Polarization-Controllable Plasmonic Enhancement on the Optical Response of Two-Dimensional GaSe Layers, ACS Applied Materials & Interfaces, 2019, 11(21): 19631-19637.
15.Large and Controllable Spin-Valley Splitting in Two-Dimensional WS2/h-VN Heterostructure, Physical Review B, 2019, 100(19): 195435.
16.Regulating the Circular Polarization in Nitride-Based Light-Emitting Diodes Through the Spin Injection, Applied Physics Express, 2019, 12(12): 123005-123005.
17.Hydrothermally Stable ZnAl2O4 Nanocrystals with Controlled Surface Structures for the Design of Long-Lastin and Highly Active/Selective PdZn Catalysts, Green Chemistry, 2019, 21(24): 6574-6578.
18.Plasmon-Enhanced Exciton Emissions and Raman Scattering of CVD-Grown Monolayer WS2 on Ag Nanoprism Arrays, Applied Surface Science, 2019, 504: 144252.
19.Improved Open-Circuit Voltage and Repeatability of Perovskite Cells Based on Double-Layer Lead Halide Precursors Fabricated by a Vapor-Assisted Method , ACS Applied Materials & Interfaces, 2019, 11(27): 24132-24139.
20.Synthesis of Wafer-Scale Monolayer WS2 Crystals toward the Application in Integrated Electronic Devices , ACS Applied Materials & Interfaces, 2019, 11(21): 19381-19387.
21.Elect rically Controllable Magnetic Properties of Fe-doped GaSe Monolayer , Journal of Physics D: Applied Physics, 2019, 52(17): 175001.
22.Modification of the Electronic and Spintronic Properties of Monolayer GaGeTe with a Vertical Electric Field , Journal of Physics D: Applied Physics, 2019, 52(11): 115101.
23.Stress Engineering on the Electronic and Spintronic Properties for a GaSe/HfSe2 van der Waals Heterostructure , Applied Physics Express, 2019, 12(3): 031002.
24.In-plane Anisotropy of Quantum Transport in Artificial Two dimensional Au Lattices, Nano Letters, 2018, 18(3): 1724-1732.
25.Enhanced Photocatalytic Efficiency of ZnO/ZnSe Coaxial Nanowires through Interfacial Strain Modification, Physica E:Low-Dimensional Systems & Nanostructures, 2018, 103: 430-434.
26.Manipulation of Perpendicular Magnetic Anisotropy of Single Fe Atom Adsorbed Graphene via MgO(111) Substrate, Journal of Physics D: Applied Physics, 2018, 51(20): 205001.
27.Tuning the Electronic, Optical, and Magnetic Properties of Monolayer GaSe with a Vertical Electric Field, Physical Review Applied, 2018, 9(4): 044029.
28.Electrically Tunable Magnetic Configuration on Vacancy-Doped GaSe Monolayer, Physics Letters A, 2018, 382(9): 667-672.
29.Strong Anti-Strain Capacity of CoFeB/MgO Interface on Electronic Structure and State Coupling, Chinese Physics B, 2018, 27(1): 017502.
30.Effect of External Strain on the Charge Transfer: Adsorption of Gas Molecules on Monolayer GaSe , Materials Chemistry and Physics, 2017, 198: 49-56.
31.Modification of Spin Electronic Properties of Fe-n/GaSe Monolayer Adsorption System, Acta Physcia Sinica, 2017, 66(16): 166301.
32.Effects of Interlayer Polarization Field on the Band Structures of the WS2/MoS2 and WSe2/MoSe2 Heterostructures , Surface Science,
33.Modulation of Electronic and Optical Anisotropy Properties of ML-GaS by Vertical Electric Field, Nanoscale Research Letters, 2017, 12: 409.
34.Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells , Nanoscale Research Letters, 2017, 12: 160.
35.Effect of Surface Morphology and Magnetic Impurities on the Electronic Structure in Cobalt-Doped BaFe2As2 Superconductors , Nano Letters, 2017, 17(3): 1642-1647.
36.Magnetic Modification of GaSe Monolayer by Absorption of Single Fe Atom, RSC Advanced, 2017, 7(8): 4285-4290.
37.Enhanced Magneto-Optical Effects in Composite Coaxial Nanowires Embedded with Ag Nanoparticles, Scientific Reports, 2016, 6: 29170.
38.Doping Behaviors of Adatoms Adsorbed on Phosphorene , Physica Status Solidi B-Basic Solid State Physics, 2016, 253(6): 1156-1166.
39.Effects of Nitrogen Dopants on the Atomic Step Kinetics and Electronic Structures of O-polar ZnO , Nanoscale, 2016, 8(7): 4381-4386.
40.Evolution of Band Structures in MoS2-Based Homo- and Heterobilayers, Journal of Physics D: Applied Physics, 2016, 49(6): 065304.
41.Effects of Thermally-Induced Changes of Cu Grains on Domain Structure and Electrical Performance of CVD-Grown Graphene, Nanoscale, 2016, 8(2): 930-937.
42.Electro-optic Coefficient Enhancement of AlxGa1-xN via Multiple Field Modulations, ACS Applied Materials & Interfaces, 2015, 7(32): 17707-17712.
43.Theoretical Study of the Interaction of Electron Donor and Acceptor Molecules with Monolayer WS2, Journal of Physics D: Applied Physics, 2015, 48(28): 285303.
44.Au and Ti induced Charge Redistributions on Monolayer WS2 , Chinese Physics B, 2015, 24(7): 77301.
45.Direct Synthesis of Graphene 3D-Coated Cu Nanosilks Network for Antioxidant Transparent Conducting Electrode, Nanoscale, 2015, 7(24): 10613-10621.
46.Effect of Boron in Fe/MgO Interface on Structural Stability and State Coupling, Computational Materials Science, 2015, 101: 138-142.
47.Novel Evolution Process of Zn-Induced Nanoclusters on Si(111)-(7x7) Surface , Nano-Micro Letters, 2015, 7(2): 194-202.
48.Metal-Atom-Induced Charge Redistributions and Their Effects on the Electrical Contacts to WS2 Monolayers, Physica Status Solidi B-Basic Solid State Physics, 2015, 252: 1783-1791.
49.First-Principles Calculations of Perpendicular Magnetic Anisotropy in Fe1-xCox/MgO(001) Thin Films , Nanoscale Research Letters, 2015, 10: 126.
50.Two-Dimensional Au Lattices Featuring Unique Carrier Transport Preference and Wide Forbidden Gap , Nanoscale, 2014, 6(17): 10118-10125.
51.Selective Surface Functionalization at Regions of High Local Curvature in Graphene, Chemical Communications, 2013, 49(7): 677-679.
52.Crystal Structure Evolution of Individual Graphene Islands During CVD Growth on Copper Foil, Advanced Materials, 2013, 25(46): 6744-6751.
53.Tuning the Doping Type and Level of Graphene with Different Gold Configurations, Small, 2012, 8(20): 3129-3136.
54.Growth Mechanism and Controlled Synthesis of AB-Stacked Bilayer Graphene on Cu-Ni Alloy Foils , ACS Nano, 2012, 6(9): 7731-7738.
55.Toward the Controlled Synthesis of Hexagonal Boron Nitride Films, ACS Nano, 2012, 6(7): 6378-6385.
56.Selective-Area Fluorination of Graphene with Fluoropolymer and Laser Irradiation, Nano Letters, 2012, 12(5): 2374-2378.
57.Detection of Sulfur Dioxide Gas with Graphene Field Effect Transistor, Applied Physics Letters, 2012, 100(16): 163114.
58.Low-Temperature Chemical Vapor Deposition Growth of Graphene from Toluene on Electropolished Copper foils, ACS Nano, 2012, 6(3): 2471-2476.
59.Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors, Nano Letters, 2012, 12(4): 1806-1812.
60.van der Waals Epitaxy of InAs Nanowires Vertically Aligned on Single-Layer Graphene, Nano Letters, 2012, 12(3): 1431-1436.
61.An Improved Method for Transferring Graphene Grown by Chemical Vapor Deposition, Nano, 2012, 7(1): 1150001.
62.Graphene Growth Using a Solid Carbon Feedstock and Hydrogen , ACS Nano, 2011, 5(9): 7656-7661.
63.Synthesis and Characterization of Large-Area Graphene and Graphite Films on Commercial Cu-Ni Alloy Foils, Nano Letters, 2011, 11(9): 3519-3525.
代表性专利
1.一种全电学调控的自旋发光探测一体器件及其制备方法, 专利号201810540087.X.
2.一种电场调控的二维自旋电子器件及其制备方法, 专利号201810559006.0.
3.一种管式CVD炉用接头、二维材料及其生长装置和方法, 专利号 201810541023.1.
4.一种具有电场可调极化率的二维旋光器件, 专利号 201820922881.6.
5.一种具有可控极化率的二维自旋电子器件, 专利号 201820923579. 2.
6.矢量强磁场下分子束外延及其原位表征装置,专利号201611236161.6
7.一种产生可控极化率的自旋电流的结构与方法, 专利号201810540985.5
8.一种产生具有电场可调极化率的旋光的结构与方法, 专利号201810541755.0
9.一种极化率可控的可变波长二维旋光器件及其制备方法,专利号201810558544.8
10.一种电可调的各向异性隧穿磁阻结构, 专利号201921002454.7
11.一种电可控的二维自旋电子器件阵列,专利号201920997049.7
12.一种电控二维自旋过滤器件,专利号201920995707.9
13.一种基于自旋注入的电控自旋发光二极管器件,专利号201920995759.6
14.一种具有电场可控极化率的旋光发光二极管器件,专利号201920997067.5
15.一种具有电控极化率的可变波长二维旋光器件,专利号201920995783.X
16.一种柔性二维磁存储阵列,专利号201920997044.4
科研基金及项目 1.国家优秀青年科学基金项目:量子结构生长及其半导体特性研发
2.国家自然科学基金重大研究计划:全同量子点晶格构筑及其量子态间耦合表征
3.科技部国家重点研发计划:半导体新结构材料和新功能器件研究
4.国家自然科学基金面上项目:氮化物/磁性二维材料异质外延及自旋-谷耦合调控应用
5.国家自然科学基金面上项目:III-VI族硫属化物二维材料及其异质结构的可控制备与自旋特性研究
6.国家自然科学基金面上项目,III族氮化物极化调控二维结构材料光电特性及偏振探测应用
7.国家自然科学基金青年项目:不同维度铁磁材料自旋电子结构模拟、表征与调控
8.福建省科技厅对外合作项目:高效率柔性薄膜太阳能电池的制备及性能研究
9.福建省自然科学基金面上项目:二维窄禁带半导体电子自旋特性调控
10.九江市科技局杰出青年人才项目:氮化物半导体自旋调控及其旋光LED应用
任教课程
招生方向 荣誉奖励