Title: Zeolite-confined Cu single-atom clusters stably catalyse CO to acetate at 1 A cm−2 beyond 1,000 h
Authors: Yan Wen, Changhong Zhan, Jiacheng Liu, Xinxin Zhuang, Siyu Liu, Tang Yang, Wenqiang Liu, Xiaozhi Liu, Cheng-Wei Kao, Yu-Cheng Huang, Ting-Shan Chan, Zhiwei Hu, Dong Su, Jiajia Han, Nanjun Chen* & Xiaoqing Huang*
Abstract: The electrochemical CO reduction reaction (CORR) has attracted a surge of research interest in sustainably producing high-value multi-carbon products, such as acetate. Nevertheless, most current CORR catalysts exhibit low acetate current densities, poor longevity and limited acetate selectivity. Here we present a Zeolite Socony Mobil-confined Cu single-atom cluster (CuZSM SACL) for CORR, in which Cu SAs are chemically anchored via robust Cu–O–Si bonds while Cu CLs are physically trapped within the porous framework of zeolite cavities. Consequently, the CuZSM SACL-containing membrane electrode assembly enables a remarkable CO-to-acetate current density of 1.8 A cm−2 with a high acetate Faraday efficiency of 71 ± 3%. More importantly, we demonstrate that the Cu-based membrane electrode assembly can stably catalyse CO to acetate at an industrial current density of 1 A cm−2 at 2.7 V (Faraday efficiency 61 ± 5%) beyond 1,000 h at atmospheric pressure. This milestone sheds light on high-performing Cu-type catalysts for practical CORR applications.

Full-Link: https://www.nature.com/articles/s41565-025-01892-6