王悦存

职 称:教授(博导)

所在系所:微纳研究所

个人主页:/xjtu/mu_nano/info/1005/2215.htm

E-MAIL:yuecunwang@xjtu.edu.cn

专业方向:半导体及芯片材料

国家高层次青年人才,西安交通大学-日立公司-西北有色金属研究院研发中心 副主任

个人简介:

2013年获得西北工业大学材料学学士学位;2018获得西安交通大学材料学博士学位并留校工作;博士期间在美国加州大学伯克利分校和劳伦兹伯克利国家实验室进行联合培养。

主要研究方向】致力于半导体产业支柱材料—硅和芯片、微/纳机电系统等相关材料的变形与损伤起源及防护等研究,为研发高性能器件及对其进行准确的寿命评估提供理论基础与方法论指导,助力高性能半导体及相关材料的研发。【其他研究方向】基于原位电镜技术的材料表界面改性研究,涉及传统钢铁、轻质镁合金及先进半导体等多种材料,助力高性能材料研发及工业化生产。【主攻技术】力、热、电等多物理场耦合下高分辨原位电镜和定量纳米力学技术开发及应用。

科研成果与项目】近年Science、Nature Mater.、Nature Commun.等国际顶级期刊发表论文多篇,部分研究工作被Science、Nature Mater.专题报道,授权/申请发明专利11项,一项专利实现成果转化(转让100 万元)主持国家自然科学基金面上和青年项目、国家重点研发智能传感器专项子课题2项省部级课题、3项百万级横向课题等(目前承担的课题总经费600余万元)

荣誉与学术兼职入选2023年度中国青年女科学家奖未来女科学家计划(全国共10人)、王宽诚基金会青年学者,获陕西省自然科学一等奖、国际国内材料领域顶尖会议优秀论文一等奖、海报金奖等。担任全国材料与器件科学家智库电子与光电子材料专家委员会委员,中国材料研究学会分析与表征分会常务理事、副秘书长,Information & Functional Materials 期刊青年编委。

教学】所在教师团队获得全国首批高校黄大年式教师团队以及西安交大研究生教育优秀导师团队荣誉称号,所授的《材料性能》课程入选国家级一流本科课程。获得2023年度材料学院优秀本科生导师称号,2024年度西安交通大学课程思政“百名教师大练兵

二等奖

【招生情况】(联系方式:yuecunwang@xjtu.edu.cn

每年可招硕士研究生2~3名博士研究1名,若干名科研实习本科生(材料、机械、微电子、能动等专业)。

【代表性学术论文】:

1. Y.C. Wang, J. Ding, Z. Fan, et al. Tension–compression asymmetry in amorphous silicon, Nature Materials, (2021)

2. T. R. Wei*, M. Jin*, Y.C. Wang*, et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe, Science, (2020).

3. Y.C. Wang, Wang X, Ding J, Liang B., Zuo L., Zheng S., Huang L., Xu W., Fan C., Duan Z., Jia C., Zheng R., Liu Z., Zhang W., Li J., Ma E., Shan Z., Inward motion of diamond nanoparticles inside an iron crystal[J]. Nature Communications, 2024, 15(1): 4659.

4. Jieling Tan, Hanyi Zhang, Xiaozhe Wang, Y. C. Wang*, Jiang-Jing Wang*, Hangming Zhang, En Ma, Wei Zhang*. Deformable monoclinic gallium telluride with high in-plane structural anisotropy. Materials Today, 2024.

5. Wei Xu, Jinhua Yu, Jun Ding, Yunna Guo, Lei Deng, Liqiang Zhang, Xiaoxuan Wan, Shaochuan Zheng, Y. C. Wang*, Zhiwei Shan*. Uniting Ultrahigh Plasticity with Near-Theoretical Strength in Submicron-Scale Si via Surface Healing[J], Adv. Fun. Mater. 2024, 202404694.

6. Y.C. Wang, Beiming Liang, Shuigang Xu et al., Tunable anelasticity in amorphous Si nanowires, Nano Letters (2020).

7. Y.C. Wang, Boyu Liu, Xin'ai Zhao, et al. Turning native or corroded Mg surface into anti-corrosion coating in excited CO2, Nature Communications, (2018).

8. Y.C. Wang, Lin Tian, Meng Li, et al. Significant “smaller is softer”in amorphous silicon via irradiation-mediated surface modification, Journal of Materials Science & Technology (2023).

9. Y.C. Wang, M Li, Y. Q. Yang, et al. In-situ surface transformation of magnesium to protect against oxidation at elevated temperatures, Journal of Materials Science & Technology (2020).

10. Y.C. Wang, Boyu Liu, Zhiwei Shan. Design of the Magnesium Composite with High Corrosion Resistance and High Deformability, Magnesium Technology (2020).

11. Yuecun Wang; Lin Tian; Fan Liu, et al. Helium ion microscope fabrication causing changes in the structure and mechanical behavior of silicon micropillars, Small, 2017.

12. X.D. Wang; Jieling Tan; Jian Ouyang et al. Designing Inorganic Semiconductors with Cold‐Rolling Processability, Advanced Science, 2022.

13. Zhiqiang Gao; Tian-Ran Wei; Tingting Deng; Pengfei Qiu; Wei Xu; Yuecun Wang; Lidong Chen; Xun Shi; High-throughput screening of 2D van der Waals crystals with plastic deformability,

Nature Communications, 2022.

14. Y.C. Wang, Zhang, W., Wang, L. Y., Zhuang, Z., Ma, E., Li, J., & Shan, Z. W. In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon. NPG Asia Materials (2016).

15. Y. C. Wang, D. G. Xie, X. H. Ning, Z. W. Shan. Thermal treatment-induced ductile-to-brittle transition of submicron-sized Si pillars fabricated by focused ion beam. Applied Physics Letters, 106(8), 081905, (2015).

16. L.Q. Zhang*, Y.C. Wang*, D.G. Xie*, Y.S. Tang, C.Y. Wu, L.S. Cui, Y.F. Li, X.H. Ning, Z.W. Shan. In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode. RSC Advances,6(14), 11441-11445, (2016).

17. Y. Q. Yang, Yuecun Wang, H. H. Lu et al. Significant mechanical softening of copper under coupled electric and magnetic stimuli (2023).

18. Zhang, Liqiang*, Yushu Tang*, Y.C. Wang*, et al. In situ TEM observing structural transitions of MoS2 upon sodium insertion and extraction." RSC Advances 6, no. 98: 96035-96038, (2016).

19. L. Yang, T. Dai, Y. C. Wang, D. G. Xie, R. L. Narayana, J. Li, X. H. Ning, Chestnut-like SnO2/C nanocomposites with enhanced lithium ion storage properties, Nano Energy, 30,885–891 (2016).

20. L.Q. Zhang, Y.S Tang, Q.M. Peng, T.T. Yang, Q.N. Liu, Y.C. Wang, Y.F. Li, C.C. Du, Y. Sun, L.S. Cui, F. Yang, Z.W. Shan, J.Y. Huang. “Ceramic Nanowelding”, Nature Communications, (2018).

21. Li, Clara Yuan, Mingshuai Ding, Yang Yang, Pengcheng Zhang, Yao Li, Y.C. Wang, Longchao Huang et al. "Portrait and Classification of Individual Haze Particulates." Journal of Environmental Protection, 7, no. 10: 1355, (2016).

22. He, Yihui, Wanqi Jie, Yadong Xu, Y.C. Wang et al. "Dislocation-mediated coupling mechanism between the microstructural defects and Te inclusions in CdZnTe single crystals." Scripta Materialia 82: 17-20, (2014).

23. Luo, X., J. W. Li, X. K. Huo, Y. C. Wang, Y. Q. Yang, X. R. Wang, and W. Zhang. "New lightweight mirror billet: connection of γ-TiAl and K9 glass with Ti6Al4V foil as interlayer." Materials Science and Technology 29, no. 2: 250-254, (2013).

24. Sun, L., Cao, Y., Ding, H., Y. C. Wang*, Ma, Q., Hua, K.*, & Wang, H. Fabrication of composite coatings containing in-situ reacted Ti2AlC/Ti2AlN MAX phases by laser cladding and investigation of fretting wear mechanism. Ceramics International, 50(20), 39138-39149 (2024).

25. Sun, L., Wang, X., Cao, Y., Y. C. Wang*, Ma, Q., Wu, H., & Wang, H.. High-temperature fretting wear behavior and microstructure stability of a laser-cladding Ti-Al-CN composite coating meditated by variable cycle conditions. Tribology International, 201, 110224, (2024).