新书报道
当前位置: 首页 >> 电类优秀教材 >> 正文
Flexible robotics : applications to multiscale manipulations
发布日期:2014-11-20  浏览

[内容简介]

The objective of this book is to provide those interested in the field of flexible robotics with an overview of several scientific and technological advances in the practical field of robotic manipulation. The different chapters examine various stages that involve a number of robotic devices, particularly those designed for manipulation tasks characterized by mechanical flexibility. Chapter 1 deals with the general context surrounding the design of functionally integrated microgripping systems. Chapter 2 focuses on the dual notations of modal commandability and observability, which play a significant role in the control authority of vibratory modes that are significant for control issues. Chapter 3 presents different modeling tools that allow the simultaneous use of energy and system structuring notations. Chapter 4 discusses two sensorless methods that could be used for manipulation in confined or congested environments. Chapter 5 analyzes several appropriate approaches for responding to the specific needs required by versatile prehension tasks and dexterous manipulation. After a classification of compliant tactile sensors focusing on dexterous manipulation, Chapter 6 discusses the development of a complying triaxial force sensor based on piezoresistive technology. Chapter 7 deals with the constraints imposed by submicrometric precision in robotic manipulation. Chapter 8 presents the essential stages of the modeling, identification and analysis of control laws in the context of serial manipulator robots with flexible articulations. Chapter 9 provides an overview of models for deformable body manipulators. Finally, Chapter 10 presents a set of contributions that have been made with regard to the development of methodologies for identification and control of flexible manipulators based on experimental data.

[目录]

Introduction xiii
Mathieu GROSSARD, Stéphane RÉGNIER and Nicolas CHAILLET

Chapter 1. Design of Integrated Flexible Structures for Micromanipulation 1
Mathieu GROSSARD, Mehdi BOUKALLEL, Stéphane RÉGNIER and Nicolas CHAILLET

1.1. Design and control problems for flexible structures in micromanipulation 2

1.2. Integrated design in micromechatronics 11

1.3. Example of an optimal synthesis method for flexible piezoelectric transduction structures 25

1.4. Conclusion 31

1.5. Bibliography 32

Chapter 2. Flexible Structures’ Representation and Notable Properties in Control 37
Mathieu GROSSARD, Arnaud HUBERT, Stéphane RÉGNIER and Nicolas CHAILLET

2.1. State-space representation of flexible structures 38

2.2. The concepts of modal controllability and observability 47

2.3. Reduction of models 52

2.4. Contribution of modal analysis criteria to topological optimization 56

2.5. Conclusion 68

2.6. Bibliography 69

Chapter 3. Structured Energy Approach for the Modeling of Flexible Structures 73
Nandish R. CALCHAND, Arnaud HUBERT, Yann LE GORREC and Hector RAMIREZ ESTAY

3.1. Introduction 73

3.2. Finite-dimensional systems 75

3.3. Infinite-dimensional systems 95

3.4. Conclusion 111

3.5. Bibliography 112

Chapter 4. Open-Loop Control Approaches to Compliant Micromanipulators 115
Yassine HADDAB, Vincent CHALVET and Micky RAKOTONDRABE

4.1. Introduction 115

4.2. Piezoelectric microactuators 116

4.3. Thermal microactuators 128

4.4. Conclusion 142

4.5. Bibliography 142

Chapter 5. Mechanical Flexibility and the Design of Versatile and Dexterous Grippers 145
Javier MARTIN AMEZAGA and Mathieu GROSSARD

5.1. Robotic gripper systems 146

5.2. Actuation architecture and elastic elements 153

5.3. Structural flexibility 166

5.4. Conclusion 177

5.5. Bibliography 178

Chapter 6. Flexible Tactile Sensors for Multidigital Dexterous In-hand Manipulation 181
Mehdi BOUKALLEL, Hanna YOUSEF, Christelle GODIN and Caroline COUTIER

6.1. Introduction 181

6.2. Human dexterous manipulation as a basis for robotic manipulation 182

6.3. Technologies for tactile sensing 188

6.4. A comparison of sensor solutions and sensing techniques 213

6.5. The Nail sensor 214

6.6. From the Nail sensor to tactile skin 220

6.7. From tactile skin to artificial touch system 225

6.8. Applications and signal analysis 228

6.9. Summary and conclusion 233

6.10. Bibliography 235

Chapter 7. Flexures for High-Precision Manipulation Robots 243
Reymond CLAVEL, Simon HENEIN and Murielle RICHARD

7.1. High-precision industrial robots background 243

7.2. Kinematic analysis of simple flexures 248

7.3. Design method of parallel modular kinematics for flexures 260

7.4. Example of the Legolas 5 robot design 264

7.5. Bibliography 273

Chapter 8. Modeling and Motion Control of Serial Robots with Flexible Joints 275
Maria MAKAROV and Mathieu GROSSARD

8.1. Introduction 275

8.2. Modeling 276

8.3. Identification 284

8.4. Motion control 295

8.5. Conclusion 310

8.6. Bibliography 310

Chapter 9. Dynamic Modeling of Deformable Manipulators 321
Frédéric BOYER and Ayman BELKHIRI

9.1. Introduction 321

9.2. Newton–Euler model of an elastic body 324

9.3. Kinematic model of a deformable manipulator 337

9.4. Dynamic model of a deformable manipulator 340

9.5. Example 342

9.6. Conclusion 346

9.7. Bibliography 346

Chapter 10. Robust Control of Robotic Manipulators with Structural Flexibilities 349
Houssem HALALCHI, Loïc CUVILLON, Guillaume MERCÈRE and Edouard LAROCHE

10.1. Introduction 349

10.2. LTI methodology 350

10.3. Toward an LPV methodology 359

10.4. Conclusion 379

10.5. Bibliography 379

List of Authors 383

Index 385

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上