新书报道
当前位置: 首页 >> 电类优秀教材 >> 正文
Laser Surface Modification and Adhesion
发布日期:2015-12-03  浏览

Laser Surface Modification and Adhesion

[BOOK DESCRIPTION]


The book provides a unique overview on laser techniques and applications for the purpose of improving adhesion by altering surface chemistry and topography/morphology of the substrate. It details laser surface modification techniques for a wide range of industrially relevant materials (plastics, metals, ceramics, composites) with the aim to improve and enhance their adhesion to other materials. The joining of different materials is of critical importance in the fabrication of many and varied products.


[TABLE OF CONTENTS]

Preface                                            xv
Part 1: Laser Surface Treatment/Modification to
Enhance Adhesion
  1 Nd:YAG Laser Surface Treatment of Various      3  (52)
  Materials to Enhance Adhesion
          A. Buchman
          M. Rotel
          H. Dodiuk-Kenig
      1.1 Introduction                             4  (9)
        1.1.1 Surface Pretreatment for Adhesive    4  (1)
        Bonding
        1.1.2 Pretreatment Processes - State of    5  (2)
        the Art
        1.1.3 Solid State Nd:YAG Laser             7  (5)
        1.1.4 The Aim of the Current Research      12 (1)
      1.2 Methodology                              13 (1)
      1.3 Experimental                             13 (4)
        1.3.1 Materials                            13 (1)
        1.3.2 Laser Parameters                     14 (1)
        1.3.3 Visual Observation                   14 (1)
        1.3.4 SEM Observation of Treated           15 (1)
        Surfaces
        1.3.5 XPS                                  15 (1)
        1.3.6 Contact Angle                        15 (1)
        1.3.7 FTIR                                 16 (1)
        1.3.8 Joint Strength                       16 (1)
        1.3.8.1 Shear Strength of Joints           16 (1)
        1.3.8.2 Tensile Strength of Joints         16 (1)
      1.4 Results                                  17 (32)
        1.4.1 Polypropylene (PP)                   17 (1)
        1.4.1.1 Contact Angle                      20 (1)
        1.4.1.2 FTIR Results                       20 (1)
        1.4.1.3 Joint Strength Measurements        21 (5)
        1.4.2 Aluminum (2024 T3)                   26 (1)
        1.4.2.1 Contact Angle                      28 (1)
        1.4.2.2 FTIR Results                       29 (1)
        1.4.2.3 Joint Strength Measurements        30 (2)
        1.4.3 Polyimide (Kapton)                   32 (1)
        1.4.3.1 Contact Angle                      35 (1)
        1.4.3.2 FTIR Results                       35 (1)
        1.4.3.3 Joint Strength Measurements        36 (4)
        1.4.4 Open Time                            40 (1)
        1.4.5 Silicone Rubber                      40 (1)
        1.4.5.1 Contact Angle                      44 (1)
        1.4.5.2 FTIR Results                       44 (1)
        1.4.5.3 Joint Strengths Measurements       44 (5)
      1.5 Conclusions                              49 (2)
      References                                   51 (4)
  2 Effects of Excimer Laser Treatment on          55 (48)
  Self-Adhesion Strength of Some Commodity (PS,
  PP) and Engineering (ABS) Plastics
          Erol Sancaktar
          Hui Lu
          Nongnard Sunthonpagasit
      2.1 Introduction                             56 (1)
      2.2 Background and Literature Survey         56 (9)
        2.2.1 Excimer Laser Surface Treatment      56 (1)
        2.2.1.1 Overview of Excimer Laser          56 (1)
        Processing
        2.2.1.2 Mechanism of Thermal-oxidation     58 (1)
        by Laser Irradiation
        2.2.1.3 Mechanism of Photo-oxidation by    58 (1)
        Laser Irradiation
        2.2.1.4 The Mathematical Models of         59 (6)
        Excimer Laser Surface Modification
      2.3 Ultrasonic Welding of Thermoplastics     65 (6)
        2.3.1 Overview of Ultrasonic Welding       65 (1)
        2.3.2 The Components of Ultrasonic         66 (1)
        Welder
        2.3.3 Mechanism of Ultrasonic Welding      66 (1)
        and Structure Development at
        Semicrystalline Interface
        2.3.4 Modeling of Ultrasonic Welding       67 (2)
        2.3.5 Minimum Flow Velocity                69 (1)
        2.3.6 Energy Directors                     69 (1)
        2.3.7 The Effect of Pressure Control       69 (1)
        2.3.8 The Effect of Ultrasonic Amplitude   70 (1)
        2.3.9 The Effect of Trigger Pressure       70 (1)
        2.3.10 The Effect of Weld Time             70 (1)
        2.3.11 The Effect of Horn Down Speed       70 (1)
        2.3.12 Ultrasonic Weldability of           71 (1)
        Thermoplastics
      2.4 Experimental Procedures                  71 (3)
        2.4.1 Sample Preparation                   71 (1)
        2.4.1.1 Materials                          71 (1)
        2.4.1.2 Injection Molding                  71 (1)
        2.4.1.3 Preparation of samples for         73 (1)
        laser treatment and welding experiments
        2.4.2 Processing                           74 (1)
        2.4.2.1 Excimer Laser Treatment            74 (1)
        2.4.2.2 Ultrasonic Welding                 74 (1)
        2.4.3 Tensile Testing                      74 (1)
      2.5 Results and Discussion                   74 (20)
        2.5.1 The Effect of Ultrasonic Weld        74 (3)
        Parameters on the Weld Strength of PP
        2.5.2 The Effect of Laser Treatment on     77 (1)
        the Ultrasonic Weld Strength
        2.5.2.1 The Effect of Laser Treatment      77 (1)
        on Weld Strength of PP
        2.5.2.2 The Effect of Laser Treatment      81 (1)
        on Weld Strengths of PS and ABS
        2.5.2.3 The Effect of Pulse Number on      84 (1)
        the Weld Strength of PS and ABS
        2.5.2.4 The Effect of Laser Pulse          87 (1)
        Energy on Weld Strength of PS and ABS
        2.5.2.5 The Effect of Laser Pulse          91 (3)
        Frequency on Weld Strength of PS and ABS
      2.6 Summary and Conclusions                  94 (3)
      References                                   97 (6)
  3 Laser Surface Pre-Treatment of Carbon          103(36)
  Fiber-Reinforced Plastics (CFRPs) for
  Adhesive Bonding
          F. Fischer
          S. Kreling
           K. Dilger
      3.1 Introduction                             103(2)
      3.2 State-of-Research                        105(5)
        3.2.1 Interaction of Laser Radiation       105(3)
        with Plastics
        3.2.2 Laser Pre-treatment of               108(2)
        Fiber-reinforced Plastic
      3.3 Materials and Methods                    110(2)
      3.4 Laser Sources and Principles             112(9)
        3.4.1 Laser Processing Strategies          114(2)
        3.4.2 Mid-UV Laser                         116(2)
        3.4.3 Near-UV Laser                        118(1)
        3.4.4 Near-IR Laser                        119(1)
        3.4.5 Mid-IR Laser                         120(1)
      3.5 Results                                  121(13)
        3.5.1 Surface Analyses and                 122(7)
        Cross-sectional Images
        3.5.2 Mechanical Tests                     129(4)
        3.5.3 Accelerated Aging                    133(1)
      3.6 Summary                                  134(1)
      References                                   135(4)
  4 Laser Surface Modification of Fibers for       139(28)
  Improving Fiber/Resin Interfacial
  Interactions in Composites
          Anil N. Netravali
      4.1 Introduction                             140(3)
      4.2 Excimer Laser Treatment of UHMWPE        143(11)
      Fibers
      4.3 Excimer Laser Treatment of Vectranョ      154(5)
      Fibers
      4.4 Excimer Laser Treatment of Aramid        159(1)
      Fibers
      4.5 Excimer Laser Treatment of Cellulose     160(1)
      Fibers
      4.6 Summary                                  161(1)
      References                                   162(5)
  5 Laser Surface Modification in Dentistry:       167(38)
  Effect on the Adhesion of Restorative
  Materials
          Regina Guenka Palma-Dibb
          Juliana Jendiroba Faraoni-Romano
          Walter Raucci-Neto
      5.1 Introduction                             167(6)
      5.2 Dental Structures                        173(7)
      5.3 Adhesion of Restorative Materials        180(6)
      5.4 Laser Light Interaction with the         186(4)
      Dental Substrate
      5.5 Dental Structure Ablation and            190(6)
      Influence on Bond Strength of Restorative
      Materials
      5.6 Summary and Prospects                    196(1)
      References                                   196(9)
Part 2: Other Effects/Applications of Laser
Surface Treatment
  6 Fundamentals of Laser-Polymer Interactions     205(58)
  and their Relevance to Polymer Metallization
          Piotr Rytlewski
      6.1 Introduction                             205(3)
      6.2 Impact of Laser Radiation on a           208(7)
      Polymeric Material
      6.3 Laser Selection Criteria                 215(5)
      6.4 Surface Modification of Polymeric        220(13)
      Materials Below Ablation Threshold
      6.5 Surface Modification of Polymeric        233(8)
      Materials Above Ablation Threshold
      6.6 Application of Lasers to Polymer         241(10)
      Metallization
        6.6.1 Metallization of Polymers            241(2)
        6.6.2 Neat Polymers in Gaseous Medium      243(3)
        6.6.3 Neat Polymers in Liquid Medium       246(1)
        6.6.4 Neat Polymers Coated with Films      247(1)
        6.6.5 Polymer Composites Containing        248(3)
        Active Species
      6.7 Summary                                  251(1)
      Acknowledgement                              252(1)
      References                                   252(11)
  7 Laser Patterning of Silanized                  263(26)
  Carbon/Polymer Bipolar Plates with Tailored
  Wettability for Fuel Cell Applications
          Martin Schade, Steffen Franzka
          Anja Schroter
          Franco Cappuccio
          Volker Peinecke
          Angelika Heinzel
          Nils Hartmann
      7.1 Introduction                             264(5)
        7.1.1 Water Management in Fuel Cells       264(2)
        7.1.2 Wettability of Materials             266(3)
      7.2 Silane-based Coatings                    269(2)
      7.3 Laser Processing of Silane-based         271(1)
      Coatings
      7.4 Fabrication and Plasma Activation of     272(4)
      Bipolar Plates
      7.5 Silanization of Bipolar Plates           276(2)
      7.6 Laser Processing of Bipolar Plates       278(4)
      7.7 Summary                                  282(1)
      7.8 Prospects                                283(1)
      Acknowledgments                              283(1)
      References                                   284(5)
  8 Predominant and Generic Parameters             289(48)
  Governing the Wettability Characteristics of
  Selected Laser-modified Engineering Materials
          Jonathan Lawrence
          David Waugh
          Hao Liang
      8.1 Introduction                             290(1)
      8.2 Modification of Wettability              291(5)
      Characteristics Using Laser Beams
        8.2.1 Laser Surface Modification of        291(1)
        Ceramic Materials for Improved
        Wettability
        8.2.2 Laser Surface Modification of        292(2)
        Metallic Materials for Improved
        Wettability
        8.2.3 Laser Surface Modification of        294(2)
        Polymers for Improved Wettability
      8.3 Laser Wettability Characteristics        296(11)
      Modification of Selected Ceramics
        8.3.1 Experimental Procedures              296(1)
        8.3.1.1 Material Specifications            296(1)
        8.3.1.2 Laser Processing Details           296(1)
        8.3.1.3 Morphological, Chemical and        297(1)
        Phase Analysis Procedures
        8.3.1.4 Wettability Characteristics        298(1)
        Analysis Procedure
        8.3.2 Identification of the Predominant    299(1)
        Mechanisms Active in Determining
        Laser-modified Wettability
        Characteristics
        8.3.2.1 For the Magnesia Partially         299(1)
        Stabilized Zirconia (MgO-PSZ)
        8.3.2.2 For the Yttria partially           303(2)
        Stabilized Zzirconia (YPSZ)
        8.3.3 Ascertaining the Generic Effects     305(2)
        of Laser Surface Treatment on the
        Wettability Characteristics of the
        Selected Ceramics
      8.4 Laser Wettability Characteristics        307(9)
      Modification of Selected Metals
        8.4.1 Experimental Procedures              307(1)
        8.4.1.1 Material Specifications            307(1)
        8.4.1.2 Laser Processing Details           308(1)
        8.4.1.3 Morphological, Chemical and        308(1)
        Phase Analysis Procedures
        8.4.1.4 Wettability Characteristics        309(1)
        Analysis Procedure
        8.4.2 Identification of the Predominant    309(1)
        Mechanisms Active in Determining
        Laser-modified Wettability
        Characteristics
        8.4.2.1 For the Ti6Al4V Alloy              309(1)
        8.4.2.2 For the 316 LS Stainless Steel     312(2)
        8.4.3 Ascertaining the Generic Effects     314(2)
        of Laser Surface Treatment on the
        Wettability Characteristics of the
        Selected Metals
      8.5 Laser Wettability Characteristics        316(13)
      Modification of a Selected Polymer
        8.5.1 Experimental Procedures              316(1)
        8.5.1.1 Material Specifications            316(1)
        8.5.1.2 Laser-induced Patterning           316(1)
        Procedure
        8.5.1.3 Laser whole-area Irradiative       319(1)
        Processing Procedure
        8.5.1.4 Topography, Wettability            319(1)
        Characteristics and Surface Chemistry
        Analysis Techniques
        8.5.2 Identification of the Predominant    320(1)
        Mechanisms Active in Determining
        Laser-modified Wettability
        Characteristics
        8.5.2.1 Laser-induced Patterning           320(1)
        8.5.2.2 Laser Whole-area Irradiative       323(1)
        Processing
        8.5.2.3 Comparison Between                 325(2)
        Laser-induced Patterning and Laser
        Whole-area Irradiative Processing
        8.5.3 Ascertaining the Generic Effects     327(2)
        of Laser Surface Treatment on the
        Wettability Characteristics of the
        Polymer
      8.6 Summary and Conclusions                  329(2)
      References                                   331(6)
  9 Laser Surface Engineering of Polymeric         337(40)
  Materials and the Effects on Wettability
  Characteristics
          D.G. Waugh
          D. Avdic
          K.J. Woodham
          I. Lawrence
      9.1 Introduction                             337(1)
      9.2 Wettability Characteristics              338(7)
        9.2.1 Contact Angle                        338(1)
        9.2.1.1 Contact Angle Hysteresis           339(1)
        9.2.1.2 The Effect of Surface Roughness    340(1)
        on the Contact Angle
        9.2.1.3 The Effects of Surface             340(2)
        Chemistry on the Contact Angle
        9.2.2 Surface Energy Parameters            342(1)
        9.2.3 Wettability in Relation to           343(1)
        Adhesion
        9.2.3.1 Adhesional Wetting                 343(1)
        9.2.3.2 Immersional Wetting                344(1)
        9.2.3.3 Spreading Wetting                  345(1)
      9.3 State-of -the-Art Surface Engineering    345(21)
      Techniques
        9.3.1 Alternatives to Laser Surface        345(1)
        Engineering
        9.3.1.1 Radiation Grafting                 345(1)
        9.3.1.2 Plasma Surface Modification        346(1)
        9.3.1.3 Ion Beam Processing                346(1)
        9.3.1.4 Micro-printing                     347(1)
        9.3.2 Photolithography                     348(3)
        9.3.3 Using Lasers for Surface             351(1)
        Engineering
        9.3.3.1 Laser Surface Engineering          351(4)
        9.3.4 A Technique for Laser Surface        355(1)
        Engineering of Polymeric Materials
        9.3.4.1 The Polymeric Material             355(1)
        9.3.4.2 The Laser Surface Treatments       355(3)
        9.3.5 Employing Laser Surface              358(1)
        Engineering of Polymeric Materials to
        Modulate Wettability Characteristics
        9.3.5.1 CO2 and KrF Excimer                358(1)
        Laser-Patterning
        9.3.5.2 CO2 and KrF Excimer Laser Whole    359(1)
        Area Irradiative Processing
        9.3.5.3 Comparisons Between                360(1)
        Laser-Patterning and Laser Whole Area
        Irradiative Processing
        9.3.5.4 Predicting Mixed-State Wetting     363(3)
        Regimes for Laser Surface Engineered
        Polymeric Materials
      9.4 Summary                                  366(1)
      References                                   367(10)
  10 Water Adhesion to Laser-Treated Surfaces      377(38)
          Athanasios Milionis
          Despina Fragouli
          Ilker S. Bayer
          Athanassia Athanassiou
      10.1 Introduction                            377(4)
      10.2 Materials, Fabrication Approaches       381(14)
      and Results
        10.2.1 Organic Materials and               381(1)
        Nanocomposites
        10.2.1.1 Crystalline Polymers              381(1)
        10.2.1.2 Thermosetting Polymers            383(1)
        10.2.1.3 Thermoplastic Polymers            386(1)
        10.2.1.4 Nanocomposites                    387(2)
        10.2.2 Inorganic Materials                 389(1)
        10.2.2.1 Silicon                           389(1)
        10.2.2.2 Metals and Alloys                 392(1)
        10.2.2.3 Glass                             393(2)
      10.3 Applications                            395(9)
        10.3.1 Manipulation of Water Droplets      395(3)
        10.3.2 Anisotropic Wetting                 398(1)
        10.3.3 Dust Removal                        399(1)
        10.3.4 Electrowetting                      400(3)
        10.3.5 Reduced Ice Friction                403(1)
        10.3.6 MEMS                                403(1)
        10.3.7 Microfluidics                       404(1)
      10.4 Prospects                               404(2)
      10.5 Summary                                 406(1)
      Acknowledgement                              406(1)
      References                                   407(8)
Index                                              415

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上