新书报道
当前位置: 首页 >> 土木工程建筑 >> 正文
混凝土与可持续发展
发布日期:2014-03-14  浏览

[内容简介]
    回顾混凝土与建筑发展的历程,作者关注并提出了如下的焦点问题及其演变方向:安全性→耐久性→服役性/功 能性→可持续性本书全面分析了世界混凝土可持续发展所面临挑战的复杂性和应对方案的多样性。第一章主要从混凝土对社会与经济发展的作用和影响的角度对混凝 土可持续性问题进行了探讨;第二章重点介绍国际范围内混凝土可持续发展所涉及的环境评价工具和方法论,并分析了不同的关注焦点、评价方法和时限对混凝土可 持续性的影响;第三、四章着重分析了水泥混凝土领域所面临的排放、捕集与吸收和循环的挑战;第五章分析了其他方面的环境挑战;第六、七章给出了综合评述及 未来发展趋势的分析;最后列出了500多条参考文献,以供有兴趣的读者深度查阅。本书主要探讨在全球范围内提升混凝土可持续性的系统思考方法和技术途径, 以此鼓励和帮助有兴趣的读者(包括政策制定者,建筑与材料领域的专家、工程师,高等学校的教授、学生,以及致力于环境与可持续发展领域的人员等)针对混凝 土可持续发展所面临的问题,用系统方法论对其资源可获取性、技术与经济可行性、环境相容性以及社会责任等要素进行全方位的思考和行动。
[目录]
Foreword by V. Mohan Malhotra xi
Foreword by Wei Sun xiii
Preface xv
Acknowledgements xvii
The authors xix
1 Introduction 1
1.1 The economical impact of concrete 2
1.2 Concrete and social progress 7
2 Environmental issues 53
2.1 Global/regional/local aspects 53
2.2 Rating systems 53
2.3 Evaluation systems/tools 58
2.4 ISO methodology/standards 67
2.5 Variation in focus 73
2.5.1 Different sectors of the concrete industry tend to focus on different aspects 74
2.5.2 Focus: Lifetime expectancy perspectives 75
2.5.3 Focus: 2020 75
2.5.4 Focus: 2050 75
2.6 Traditions/testing 76
2.6.1 Example 1 77
2.6.2 Example 2 78
2.6.3 Example 3 79
3 Emissions and absorptions 81
3.1 General 81
3.2 CO2 emission from cement and concrete production 85
3.3 Emission of other greenhouse gases 89
3.4 Absorption/carbonation 92
3.5 The tools and possible actions 103
3.5.1 Increased utilisation of supplementary cementing materials 103
3.5.2 Fly ash 107
3.5.3 Blast furnace slag 115
3.5.4 Silica fume 118
3.5.5 Metakaolin 120
3.5.6 Rice husk ash (RHA) 121
3.5.7 Natural pozzolans 124
3.5.8 Other ashes and slags 130
3.5.8.1 Sewage sludge incineration ash (SSIA) 131
3.5.8.2 Ferroalloy slag 131
3.5.8.3 Barium and strontium slag 132
3.5.8.4 Other types of slag 132
3.5.8.5 Ashes from co-combustion 133
3.5.8.6 Wood ash 134
3.5.8.7 Fluidised bed ash 134
3.5.9 Limestone powder 135
3.5.10 Other supplementary cementitious materials 138
3.5.11 Improvements and more efficient cement
production 141
3.5.12 New/other types of cement/binders 152
3.5.12.1 High-belite cement(HBC) 163
3.5.12.2 Sulphur concrete 164
3.5.13 Increased carbonation 165
3.5.14 Better energy efficiency in buildings 165
3.5.15 Improved mixture design/packing technology/water reduction 166
3.5.16 Increased building flexibility, and more sustainable design and recycling practice 169
3.5.17 Miscellaneous 172
3.5.17.1 Production restrictions 172
3.5.17.2 The testing regime 172
3.5.18 Carbon capture and storage (CCS) 172
3.5.18.1 Capture 173
3.5.18.2 Storage 174
3.6 Variation in focus 176
3.6.1 Focus 1: Lifetime expectancy perspective 176
3.6.2 Focus 2: 2020 177
3.6.3 Focus 3: 2050 178
3.7 Some conclusions 180
4 Recycling 181
4.1 Recycling of concrete 181
4.1.1 Norway 186
4.1.2 Japan 187
4.1.3 The Netherlands 188
4.1.4 Hong Kong, China 189
4.1.5 General 189
4.1.5.1 Processing technology 192
4.1.5.2 Fines 194
4.2 Recycling of other materials as aggregate in concrete 200
4.2.1 Used rubber tires in concrete 200
4.2.2 Aggregate manufactured from fines 204
4.2.3 Processed sugar cane ash 204
4.2.4 Recycled plastic, e.g., bottles 204
4.2.5 Hempcrete and other “straw concretes” 206
4.2.6 Papercrete 207
4.2.7 Oil palm shell lightweight concrete 208
4.2.8 Glass concrete 208
4.2.9 Paper mill ash for self-compacting concrete (SCC) 211
4.2.10 Slag 211
4.2.11 Recycling of “doubtful” waste as aggregate 211
4.2.12 Iron mine mill waste (mill tailings) 213
4.2.13 Bauxite residue/red sand 213
4.2.14 Copper slag 214
4.2.15 Other materials 214
4.2.16 Waste latex paint 215
4.2.17 Fillers for self-compacting concrete 216
4.3 Recycling of other materials as reinforcement in concrete 219
4.4 Recycling of other materials as binders in concrete 220
4.4.1 Waste glass 220
4.4.2 Recycling of fluid catalytic cracking catalysts 220
4.5 Recycling of cement kiln dust (CKD) 221
5 The environmental challenges—other items 225
5.1 Aggregate shortage 225
5.2 Durability/longevity 231
5.3 Energy savings 241
5.4 Health 248
5.4.1 Skin burn 250
5.4.2 The chromium challenge 250
5.4.3 Compaction by vibration 252
5.4.4 Dust 252
5.4.5 Emission and moisture in concrete 253
5.4.6 Form oil 255
5.4.7 NOx-absorbing concrete 255
5.4.7.1 General 255
5.4.7.2 Principle of reaction 255
5.4.7.3 The catalyst 255
5.4.7.4 The effects 256
5.4.7.5 Concrete—product areas 257
5.4.7.6 Other experiences 258
5.4.7.7 Climate change and health 259
5.5 Leakage 260
5.5.1 General 260
5.5.2 Leakage of pollutants from cement and concrete 261
5.5.2.1 Leakage from the cement manufacture process 262
5.5.2.2 Leakage from concrete 263
5.5.3 Concrete to prevent leakage 269
5.6 Noise pollution 271
5.6.1 Noise reduction in concrete production 273
5.6.2 Noise reduction from traffic 273
5.6.3 Reduction of noise pollution in buildings 274
5.6.4 Step sound reduction in stairways 275
5.7 Radiation 280
5.7.1 Effects of radioactive radiation on the human body 281
5.7.1.1 Alpha particles (or alpha radiation) 281
5.7.1.2 Beta particles 282
5.7.1.3 X-rays and gamma rays 282
5.7.2 Natural radioactivity in building materials 285
5.7.3 Radiation from cement and concrete 289
5.7.4 Radioactivity risk reduction with cement and concrete 292
5.7.4.1 Concrete as a shield of radiation 292
5.7.4.2 Encapsulation of radioactive materials with cement and concrete 296
5.7.5 Clearance of radioactive concrete 299
5.8 Safety 300
5.8.1 Concrete as a safety tool 303
5.8.2 Concrete safety levels in a climate change perspective 305
5.9 Water 307
5.9.1 Water shortage 310
5.9.2 Managing the increased precipitation 314
5.9.2.1 Pervious concrete 316
5.9.2.2 Pervious ground with concrete paver systems 319
5.9.2.3 Delaying systems 319
5.9.3 Reuse of wash water from concrete production 320
5.9.4 Escape of wash water from concrete production to freshwater and the sea 328
5.9.5 Food supply—artificial fish reefs (AFRs) 331
5.9.5.1 History 332
5.9.5.2 Where have AFRs been used? 332
5.9.5.3 Motivations for establishing AFRs 333
5.9.5.4 Design factors 334
5.9.5.5 Some examples 337
5.9.5.6 Restoration of coral reefs 337
5.9.5.7 The Tjuvholmen project 338
5.9.6 Erosion protection 342
5.10 Wastes 342
6 New possibilities and challenges 357
6.1 Small hydroelectric power stations 358
6.2 Windmills 359
6.3 New raw materials/low energy and low CO2 cements 365
6.3.1 Principle for clinker composition design 366
6.3.2 Lower energy and low-emission clinker preparation 368
6.3.3 Performance evaluation of HBC 368
6.3.3.1 Strength 369
6.3.3.2 Heat evolution characteristics 370
6.3.3.3 Chemical corrosion resistance 371
6.3.3.4 Drying shrinkage 371
6.3.3.5 Existing standards for HBC 372
6.3.3.6 Simplified explanation for the excellent performance of HBC 372
6.3.4 Latest results on belite-calcium Sulfoaluminate (BCSA) cement 372
6.4 New concrete products and components 373
7 The future 375
References 379
Index 413

关闭


版权所有:西安交通大学图书馆      设计与制作:西安交通大学数据与信息中心  
地址:陕西省西安市碑林区咸宁西路28号     邮编710049

推荐使用IE9以上浏览器、谷歌、搜狗、360浏览器;推荐分辨率1360*768以上