姓名:吴兴隆
出生年月:1979年8月
学历(学位):博士
毕业院校:浙江大学(本科)
美国University of Miami(硕士/博士)
现任职务:武汉工程大学计算机学院副教授,硕士生导师
主要社会兼职:湖北省青年科协常务理事,湖北省计算机学会理事
表彰及荣誉:湖北省组织部第四批人才计划特聘专家(2015年)
湖北省教育厅“人才计划”(2018年)
江苏省组织部“双创计划”创新人才(2019年)
个人经历:
2008.01-2011.04, 美国University of Miami, 博士后/Assistant Scientist
2010.06-2010.12,美国芝加哥大学Computation Institute, 访问学者
主要研究方向:
(1)生物医学图像处理
(2)机器视觉
(3)嵌入式开发和应用
科研项目:近年来共主持和参加国家级研究中心开放课题、湖北省自然科学基金面上项目、省教育厅科学研究计划指导项目、国家人社部和湖北省人社厅留学回国人员择优项目研究,以及一批企业委托横向科研项目的研究工作。
主持和参与的部分项目:
[1] “基于生成式深度学习的乳腺癌淋巴结转移预测的多模态多中心回顾性研究”, 新疆人工智能影像辅助诊断重点实验室立项开放课题,主持;
[2] “Docker模式深度学习技术在全脑三维重建中应用研究”,武汉光电国家实验室开放课题,主持;
[3] “自增长式的白名单人脸识别和身份确认云平台”, 湖北省教育厅科学研究计划指导项目, 主持;
[4] “人工智能技术对肾脏肿块性疾病的二维超声诊断研究”,参与湖北省自然科学基金面上项目,参与
[5] “私有云平台中的智慧云计算集群”,人社部留学回国人员科技活动择优资助项目优秀类,主持;
[6] “企业级私有云平台”, 人社部留学回国人员科技活动择优资助项目启动类,主持;
科研成果:在国内外重要学术刊物上发表SCI科研论文近20篇。申请发明专利近10项,软件著作权10余项。部分成果如下:
[1] Xu G., Wang X., Wu X.*, Leng X. and Xu Y., (2024). Development of residual learning in deep neural networks for computer vision: A survey, Engineering Applications of Artificial Intelligence, Volume 142, 2025, 109890, 10.1016/j.engappai.2024.109890.
[2] Cui, X. W., Goudie, A., Blaivas, M., Chai, Y. J., Chammas, M. C., Dong, Y., Stewart, J., Jiang, T. A., Liang, P., Sehgal, C. M., Wu, X. L., Hsieh, P. C., Adrian, S., & Dietrich, C. F. (2024). WFUMB Commentary Paper on Artificial intelligence in Medical Ultrasound Imaging. Ultrasound in medicine & biology, S0301-5629(24)00412-5. https://doi.org/10.1016/j.ultrasmedbio.2024.10.016
[3] Pan, C., Wei, H., Chen, B., Wu, L., Song, J., Zhang, Q., Wu, X., Liang, G., Chen, W., Wang, Y., & Xie, Y. (2024). Inhalation of itraconazole mitigates bleomycin-induced lung fibrosis via regulating SPP1 and C3 signaling pathway pivotal in the interaction between phagocytic macrophages and diseased fibroblasts. Journal of translational medicine, 22(1), 1058. https://doi.org/10.1186/s12967-024-05895-0
[4] X. Cao, Y. Fang, C. Yang, Z. Liu, G. Xu, Y. Jiang, P. Wu, W. Song, H. Xing, X. Wu*, "Prediction of Prostate Cancer Risk Stratifications Based on A Non-Linear Transformation Stacking Learning Strategy," International neurourology Journal, 2024;28(1):33-43. https://doi.org/10.5213/inj.2346332.166
[5] X. Cao, X. Wu*, et al., "PFCA-Net: a post-fusion based cross-attention model for predicting PCa Gleason Group using multiparametric MRI," 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkiye, 2023, pp. 3507-3513. https://doi.org/10.1109/BIBM58861.2023.10385606
[6] G. Xu, X. Leng, C. Li, X. He and X. Wu*, "MGFuseSeg: Attention-Guided Multi-Granularity Fusion for Medical Image Segmentation," 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkiye, 2023, pp. 3587-3594, https://doi.org/10.1109/BIBM58861.2023.10385461.
[7] Xu, G., Zhang, X., He, X., X. Wu* (2024). LeViT-UNet: Make Faster Encoders with Transformer for Medical Image Segmentation. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14432. Springer, Singapore. https://doi.org/10.1007/978-981-99-8543-2_4
[8] W., Wu. L., Jiang, Y., Xing, H., Song, P., Cui, X. Wu, X. L.*, & Xu, G.* (2023). Multimodality deep learning radiomics nomogram for preoperative prediction of malignancy of breast cancer: a multicenter study. Physics in medicine and biology. https://doi.org/10.1088/1361-6560/acec2d
[9] Wu, X. L., Jiang, Y., Xing, H., Song, W., Wu, P., Cui, X. W., & Xu, G. (2023). ULS4US: universal lesion segmentation framework for 2D ultrasound images. Physics in medicine and biology. https://doi.org/10.1088/1361-6560/ace09b.
[10] Guoping Xu, Wentao Liao, Xuan Zhang, Chang Li, Xinwei He, and Xinglong Wu. 2023. Haar wavelet downsampling: A simple but effective downsampling module for semantic segmentation. Pattern Recognition. 143, C (Nov 2023). https://doi.org/10.1016/j.patcog.2023.109819
[11] Yang, C., Liu, Z., Fang, Y., Cao, X., Xu, G., Wang, Z., Hu, Z., Wang, S., & Wu, X. (2023). Development and validation of a clinic machine-learning nomogram for the prediction of risk stratifications of prostate cancer based on functional subsets of peripheral lymphocyte. Journal of translational medicine, 21(1), 465. https://doi.org/10.1186/s12967-023-04318-w
[12] Rong Xiao, Lei Zhu, Jiangshan Liao, Xinglong Wu, Hui Gong, Jin Huang, Ping Li, Bin Sheng, Shangbin Chen,,DDeep3M+: adaptive enhancement powered weakly supervised learning for neuron segmentation, Neurophoton. 10(3), 035003 (2023), https://doi.org/10.1117/1.NPh.10.3.035003.
[13] W. Liao, G. Xu*, X. Wu*, X. Zhang and C. Li, "Dual-branch body and boundary supervision network for ultrasound image segmentation," 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2022, pp. 3071-3077, https://doi.org/10.1109/BIBM55620.2022.9995339.
[14] G. Xu, X. Wu*, X. Zhang, W. Liao and S. Chen (2022). LGNet: Local and Global Representation Learning for Fast BioMedical Image Segmentation. Journal of Innovative Optical Health Sciences, https://doi.org/10.1142/S1793545822430015.
[15] Wu, X., Li, M., Cui, X. W., & Xu, G. (2022). Deep multimodal learning for lymph node metastasis prediction of primary thyroid cancer. Physics in medicine and biology, 67(3),https://doi.org/10.1088/1361-6560/ac4c47.
[16] G. Xu and X. Wu*, "FAM: Fully Attention Module for Medical Image Segmentation," 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2021,https://doi.org/10.1109/BIBM52615.2021.9669567.
[17] Wu X, Tao Y, He G, Liu D, Fan M, Yang S, Gong H, Xiao R, Chen S and Huang J., 2021: Boosting Multilabel Semantic Segmentation for Somata and Vessels in Mouse Brain. Front. Neurosci. https://doi.org/10.3389/fnins.2021.610122
[18] Huang, J., He, R., Chen, J, Wu. X* (2021). Boosting Advanced Nasopharyngeal Carcinoma Stage Prediction Using a Two-Stage Classification Framework Based on Deep Learning. Int J Comput Intell Syst 14, 184.https://doi.org/10.1007/s44196-021-00026-9.
[19] X.L. Wu, S.B. Chen*, J. H.*, A. Li, R. Xiao, X.W. Cui, 2020: DDeep3M: Docker-powered deep learning for biomedical image segmentation. Journal of Neuroscience Methods.https://doi.org/10.1016/j.jneumeth.2020.108804
[20] Zhou L., Wu, X., Cui*. X., etc. 2019: Lymph node metastasis prediction from primary breast cancer ultrasound images using deep learning. Radiology.https://doi.org/10.1148/radiol.2019190372.
[21] X. Kong, S. Yan, E. Zhou, J. Huang, X. Wu, P. Wang, and S. Chen, "DDeep3M-based neuronal cell counting in 2D large-scale images," in Optics in Health Care and Biomedical Optics IX (SPIE, 2019), pp. 1119037
[22] Zhou L., Wang J., Yu S., Wu G., Wei Q., Deng Y., Wu X., Cui* X. and Dietrich C., 2019: Artificial intelligence in medical imaging of liver. World Journal of Gastroenterology.https://doi.org/10.3748/wjg.v25.i6.672
部分授权和公示中的发明专利
[1] 一种基于云计算的云集群快速部署系统,专利号 201410375022.6
[2] 一种新型NOR Flash译码电路,授权号CN104464808A
[3] 基于多模态深度学习分类模型的模态贡献度的计算方法, CN202110563034.1
[4] 基于深度卷积神经网络的提升式多标签语义分割方法, CN202110448155.1
[5] 预测前列腺癌风险分层的临床特征-机器学习列线图方法, CN202310687169.8
[6] 基于多模态深度学习影像组学的乳腺癌超声图像, CN202310688889.6
[7] 基于编解码结构的经颅磁刺激电场快速成像方法, CN202210055122.5
教学工作:先后承担5门本科生和1门研究生课程的讲授任务。目前主要讲授的课程有:“Python程序设计”、“机器学习”、“Python数据分析与挖掘”、“数字图像处理”、“操作系统”等。
联系方式:xwu@wit.edu.cn
欢迎有志于在生物医学图像处理、机器视觉算法开发和基于FPGA的人工智能算法加速等相关领域的同学报考!