近五年SCI收录论文(节选)
[1]. Yu M, Hu X, Chi Y, et al. A unified method for calculating the fire resistance of concrete-filled steel tube with fire protection under combined loading[J]. Journal of Constructional Steel Research. 2020, 168: 106003.
[2]. Xu H, Yu M, Xue C, et al. Experimental study on fire resistance of precast concrete columns with efficient reinforcement[J]. Engineering Structures. 2020, 204: 109947.
[3]. Yu M, Yang B, Chi Y, et al. Experimental study and DEM modelling of bolted composite lap joints subjected to tension[J]. Composites Part B: Engineering. 2020, 190: 107951.
[4]. Wu F, Xu L, Chi Y, et al. Compressive and flexural properties of ultra-high performance fiber-reinforced cementitious composite: The effect of coarse aggregate[J]. Composite Structures. 2020, 236: 111810.
[5]. Yu M, Wang T, Huang W, et al. Fire resistance of concrete-filled steel tube columns with preload. Part I: Experimental investigation[J]. Composite Structures. 2019, 223: 110994.
[6]. Yu M, Wang T, Huang W, et al. Fire resistance of concrete-filled steel tube columns with preload. Part II: Numerical and analytical investigation[J]. Composite Structures. 2019, 223: 110995.
[7]. Yan Y, Xu L, Li B, et al. Axial behavior of ultra-high performance concrete (UHPC) filled stocky steel tubes with square sections[J]. Journal of Constructional Steel Research. 2019, 158: 417-428.
[8]. Huang L, Chi Y, Xu L, et al. A thermodynamics-based damage-plasticity model for bond stress-slip relationship of steel reinforcement embedded in fiber reinforced concrete[J]. Engineering Structures, 2019, 180: 762-778.
[9]. Deng F, Ding X, Chi Y, et al. The pull-out behavior of straight and hooked-end steel fiber from hybrid fiber reinforced cementitious composite: Experimental study and analytical modelling[J]. Composite Structures, 2018, 206: 693-712.
[10]. Yu M, Xu H, Ye J, et al. A unified interaction equation for strength and global stability of solid and hollow concrete-filled steel tube columns under room and elevated temperatures[J]. Journal of Constructional Steel Research, 2018, 148: 304-313.
[11]. Li B, Chi Y, Xu L, et al. Cyclic tensile behavior of SFRC: Experimental research and analytical model[J]. Construction and Building Materials, 2018, 190: 1236-1250.
[12]. Yu M, Pei X, Xu L, et al. A unified formula for calculating bending capacity of solid and hollow concrete-filled steel tubes under normal and elevated temperature[J]. Journal of Constructional Steel Research, 2018, 141: 216-225.
[13]. Li B, Chi Y, Xu L, et al. Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete[J]. Construction and Building Materials, 2018, 191: 80-94.
[14]. Li B, Xu L, Shi Y, et al. Effects of fiber type, volume fraction and aspect ratio on the flexural and acoustic emission behaviors of steel fiber reinforced concrete[J]. Construction and Building Materials, 2018, 181: 474-486.
[15]. Bao H, Yu M, Liu Y, et al. Experimental and statistical study on the irregularity of carbonation depth of cement mortar under supercritical condition[J]. Construction and Building Materials, 2018, 174: 47-59.
[16]. Xu L, Li B, Ding X, et al. Experimental Investigation on Damage Behavior of Polypropylene Fiber Reinforced Concrete under Compression[J]. International Journal of Concrete Structures and Materials, 2018, 12(1): 68.
[17]. Xu L, Zhou P, Chi Y, et al. Performance of the High-Strength Self-Stressing and Self-Compacting Concrete-Filled Steel Tube Columns Subjected to the Uniaxial Compression[J]. International Journal of Civil Engineering, 2018, 16(9): 1069-1083.
[18]. Xu L, Li B, Chi Y, et al. Stress-Strain Relation of Steel-Polypropylene-Blended Fiber-Reinforced Concrete under Uniaxial Cyclic Compression[J]. Advances in Materials Science and Engineering, 2018, 2018.
[19]. Yu M, Bao H, Ye J, et al. The effect of random porosity field on supercritical carbonation of cement-based materials[J]. Construction and Building Materials, 2017, 146: 144-155.
[20]. Yan F, Yu M, Lv J H. Dual reciprocity boundary node method for convection-diffusion problems[J]. Engineering Analysis with Boundary Elements, 2017, 80: 230-236.
[21]. Chi Y, Yu M, Huang L, et al. Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity[J]. Engineering Structures, 2017, 148: 23-35.
[22]. Li B, Xu L, Chi Y, et al. Experimental investigation on the stress-strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression[J]. Construction and Building Materials, 2017, 140: 109-118.
[23]. Xu L, Deng F, Chi Y. Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste[J]. Construction and Building Materials, 2017, 145: 619-638.
[24]. Xu L, Huang L, Chi Y, et al. Tensile behavior of steel-polypropylene hybrid fiber-reinforced concrete[J]. ACI Materials Journal, 2016, 113(2): 219-229.
[25]. Huang L, Chi Y, Xu L, et al. Local bond performance of rebar embedded in steel-polypropylene hybrid fiber reinforced concrete under monotonic and cyclic loading[J]. Construction and Building Materials, 2016, 103: 77-92.
[26]. Zha X, Yu M, Ye J, et al. Numerical modeling of supercritical carbonation process in cement-based materials[J]. Cement and Concrete Research, 2015, 72: 10-20.
[27]. Chi Y, Li M, Xu L, et al. Phase transition induced interfacial debonding in shape memory alloy fiber–matrix system[J]. International Journal of Solids and Structures, 2015, 75: 199-210.
[28]. Huang L, Xu L, Chi Y, et al. Experimental investigation on the seismic performance of steel–polypropylene hybrid fiber reinforced concrete columns[J]. Construction and Building Materials, 2015, 87: 16-27.
近五年EI收录论文(节选)
[1]. 余敏,陈楷,王叹,等. 考虑初应力影响的圆钢管混凝土柱抗震性能研究[J]. 建筑结构学报. 2019, 40(S1): 234-240.
[2]. 颜燕祥,徐礼华,蔡恒,等. 高强方钢管超高性能混凝土短柱轴压承载力计算方法研究[J]. 建筑结构学报. 2019, 40(12): 128-137.
[3]. 邓方茜,徐礼华,池寅,王力.基于均匀化理论的混杂纤维混凝土有效弹性模量计算[J].硅酸盐学报,2019(02):161-170.
[4]. 徐礼华,李长宁,李彪,池寅,黄彪.循环受压状态下钢纤维混凝土一维弹塑性损伤本构模型研究[J].土木工程学报,2018,51(11):77-87.
[5]. 余敏,童栋华,池寅,叶建乔,杜新喜.截面形状对早龄期钢管混凝土柱多级加载变形及承载力影响的试验研究[J].建筑结构学报,2018,39(08):148-156.
[6]. 徐礼华,李彪,池寅,黄彪,李长宁,时豫川.钢-聚丙烯混杂纤维混凝土单轴循环受压应力-应变关系研究[J].建筑结构学报,2018,39(04):140-152.
[7]. 赵国飞,余敏,童栋华,鲍浩.早龄期钢管混凝土短柱轴压性能试验与理论分析[J].哈尔滨工业大学学报,2018,50(12):53-60.
[8]. 颜燕祥,徐礼华,余敏,李彪,查晓雄.异形钢管混凝土柱偏压承载力统一算法研究[J].湖南大学学报(自然科学版),2018,45(03):18-28.
[9]. 池寅,黄乐,余敏.基于ABAQUS的钢-聚丙烯混杂纤维混凝土损伤塑性本构模型取值方法研究[J].工程力学,2017,34(12):131-142.
[10]. 刘素梅,徐礼华,池寅,李浩.混凝土结构基本原理教学方法创新与实践[J].高等建筑教育,2017,26(06):68-71.
[11]. 童栋华,余敏,鲍浩,叶建乔.多级加载对圆形钢管混凝土短柱轴压性能影响试验研究[J].建筑结构学报,2017,38(S1):241-248.
[12]. 查晓雄,陈德劲,王维肖,余敏,徐礼华.内配加劲件钢管混凝土构件受弯性能理论与试验研究[J].建筑结构学报,2017,38(S1):471-477.
[13]. 陈德劲,查晓雄,李松波,余敏,徐礼华.受拉内配加劲件钢管混凝土塔架内外钢构件共同工作性能试验研究[J].建筑结构学报,2017,38(S1):485-492+501.
[14]. 苏洁,李彪,池寅.钢-聚丙烯混杂纤维混凝土真三轴应力-应变关系试验研究[J].施工技术,2016,45(S2):494-498.
[15]. 徐礼华,余红芸,池寅,邓方茜,胡杰.钢纤维-水泥基界面过渡区纳米力学性能[J].硅酸盐学报,2016,44(08):1134-1146.
[16]. 胡杰,徐礼华,邓方茜,池寅,刘素梅.聚丙烯纤维增强水泥基复合材料界面过渡区的纳米力学性能[J].硅酸盐学报,2016,44(02):268-278