题目:Decomposition Methods for Large-Scale Optimization Problems and Their Applications
主讲:陈彩华
时间:2018年4月17日(周二)14:00
地点:理学院206会议室
主办:理学院、应用系统分析研究院
主讲简介:陈彩华,新加坡国立大学工业系统工程与管理系访问副教授,南京大学理学博士,新加坡国立大学联合培养博士。曾赴新加坡国立大学、香港理工大学、香港浸会大学等学习与访问,与来自新加坡、香港、美国的国际一流学者建立了实质性的合作关系。首批南京大学仲英青年学者。获2017年世界华人数学家大会杰出论文奖。目前主持国家自然科学基金、江苏省自然科学基金各一项。在《Mathematical Programming》, 《SIAM Journal on Optimization》,《SIAM Journal on Imaging Science》,《IMA Journal of Numerical Analysis》等国际知名学术期刊发表文章十余篇。2篇论文分别入选数学、计算机科学领域的高被引论文,引用率在所在学科前1%。
主讲内容:We live in the age of big data and data of huge size is becoming ubiquitous. With this comes the need to solve optimization problems of unprecedented size. Classical optimization algorithms are not designed to scale to instances of this size. In this talk, I introduce two typical decomposition methods —— BCD and ADMM, for solving large scale optimization problems and present some novel theoretical results on these two methods. Some interesting applications, including matrix completion, pricing discrimination for information goods and regularized matrix factorization are also discussed.