参考文献(References):
[1] LI V C,WANG S X,WU C.Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J].ACI Materials Journal,2001,98(6):483.
[2] MAALEJ M,AHMED S F U,PARAMASIVAM P.Corrosion durability and structural response of functionally-graded concrete beams[J].Journal of Advanced Concrete Technology,2003,1(3):307.
[3] 杜修力,窦国钦,李亮,等.纤维高强混凝土的动态力学性能试验研究[J].工程力学,2011,28(4):138.
[4] WANG Y C,LIU F C,YU J T,et al.Effect of polyethylene fiber content on physical and mechanical properties of engineered cementitious composites[J].Construction and Building Materials,2020,251:118917.
[5] 柴鑫伟,谢群,王欣,等.混杂纤维高韧性水泥基复合材料拉伸性能试验研究[J].建筑结构学报,2022,43(增刊1):353.
[6] 许子龙,谢群.混杂纤维增强高韧性水泥基复合材料的拉伸性能[J].济南大学学报(自然科学版),2021,35(1):68.
[7] 周宗伯,陈泽辛,余志辉,等.混杂纤维高延性水泥基复合材料高温后的压缩性能[J].功能材料,2023,54(7):7101.
[8] LAWLER J S,WILHELM T,ZAMPINI D,et al.Fracture processes of hybrid fiber-reinforced mortar[J].Materials and Structures,2003,36:197.
[9] CHEN Y,QIAO P Z.Crack growth resistance of hybrid fiber-reinforced cement matrix composites[J].Journal of Aerospace Engineering,2011,24(2):154.
[10] AHMED S F U,MAALEJ M.Tensile strain hardening behavior of hybrid steel-polyethylene fiber reinforced cementitious composites[J].Construction and Building Materials,2009,23(1):96.
[11] QIAN C X,STROEVEN P.Development of hybrid polypropylene-steel fibre-reinforced concrete[J].Cement and Concrete Research,2000,30(1):63.
[12] 王冲,于超,罗遥凌,等.不同侵蚀条件下水泥基材料碳硫硅钙石生成速度比较[J].同济大学学报(自然科学版),2015,43(5):748.
[13] 柴丽娟,郭丽萍,陈波,等.冻融和碳化交替作用下生态高延性水泥基复合材料的剪切性能[J].东南大学学报(自然科学版),2019,49(1):76.
[14] 苏骏,钱维民,郭锋,等.超低温对超高韧性水泥基复合材料抗压韧性影响试验[J].复合材料学报,2021,38(12):4325.
[15] ?AHMARAN M,?ZBAY E,YüCEL H E,et al.Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures[J].Journal of Materials in Civil Engineering,2011,23(12):1735.
[16] ?AVDAR A.The effects of high temperature on mechanical properties of cementitious composites reinforced with polymeric fibers[J].Composites:Part B:Engineering,2013,45(1):78.
[17] POURFALAH S.Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures[J].Construction and Building Materials,2018,158:921.
[18] 付晔,李庆华,徐世烺.高温后纳米改性水泥基材料的残余抗折强度[J].深圳大学学报(理工版),2014,31(2):187.
[19] 彭宇,赵昕,徐世烺,等.高温后超高韧性水泥基复合材料的微观结构特征研究[J].电子显微学报,2019,38(3):236.
[20] 李曈,张晓东,刘华新,等.高温后混杂纤维混凝土力学性能试验研究[J].铁道科学与工程学报,2020,17(5):1171.
[21] 随志博.生态型超高韧性水泥基复合材料的基本力学性能研究[D].郑州:郑州大学,2020.
[22] 田砾,史建丽,赵铁军,等.应变硬化水泥基复合材料高温后弯曲韧性研究[J].硅酸盐通报,2015,34(4):1011.
[23] 张志刚,赵林,张沛,等.亚高温下不同粉煤灰掺量高延性混凝土的力学性能[J].东南大学学报(自然科学版),2020,50(5):831.
[24] JSCE.Method of test for flexural strength and flexural toughness of steel fiber reinforced concrete:JSCE SF4[S].Tokyo:JSCE,1984:45-51.
[25] CAO M L,ZHANG C,LYU H F,et al.Characterization of mechanical behavior and mechanism of calcium carbonate whisker-reinforced cement mortar[J].Construction and Building Materials,2014,66:89.
[26] 李黎,李宗利,高丹盈,等.高温对钢纤维-聚乙烯醇纤维-CaCO3晶须多尺度纤维/水泥复合材料弯曲性能和微观结构的影响[J].复合材料学报,2021,38(7):2326.