2024年 06期

Effects of High Temperature Treatment on Flexural Property of Polyethylene Fiber-Steel Fiber High Toughness Cement Matrix Composites


摘要(Abstract):

为了探究高韧性水泥基复合材料经高温处理后的力学性能,采用聚乙烯纤维与钢纤维混杂方式制备一种混杂纤维高韧性水泥基复合材料,通过三点抗折试验探讨所制得聚乙烯纤维-钢纤维高韧性水泥基复合材料经温度20、 60、 100、 150、 200、 250℃处理后的抗折性能。结果表明:随着处理温度的升高,该复合材料的开裂应力、峰值应力和弯曲韧性均表现为先增大后减小的变化规律,处理温度为60、 150℃时最大开裂应力为12.09 MPa,最大峰值应力为18.52 MPa;峰值应力受处理温度的影响较显著,当处理温度为200、 250℃时,聚乙烯纤维熔化,复合材料的峰值应力相较于处理温度为150℃时的分别减小42.7%、 57.9%;该复合材料的弯曲韧性在指定挠度为L/150、L/100(其中L为支座间跨度)阶段受处理温度影响较小,在指定挠度为L/50、L/25阶段,随着处理温度的升高而先增大后减小,聚乙烯纤维熔化导致复合材料在大挠度阶段的弯曲韧性明显减小。

关键词(KeyWords): 高韧性水泥基复合材料;高温处理;抗折性能;弯曲韧性;聚乙烯纤维;钢纤维

基金项目(Foundation): 国家自然科学基金项目(52108214);; 山东省住房城乡建设科技计划项目(2020-K5-18)

作者(Author): 张港,谢群,于晓伟,赵鹏

DOI: 10.13349/j.cnki.jdxbn.20240024.004

参考文献(References):

[1] LI V C,WANG S X,WU C.Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J].ACI Materials Journal,2001,98(6):483.

[2] MAALEJ M,AHMED S F U,PARAMASIVAM P.Corrosion durability and structural response of functionally-graded concrete beams[J].Journal of Advanced Concrete Technology,2003,1(3):307.

[3] 杜修力,窦国钦,李亮,等.纤维高强混凝土的动态力学性能试验研究[J].工程力学,2011,28(4):138.

[4] WANG Y C,LIU F C,YU J T,et al.Effect of polyethylene fiber content on physical and mechanical properties of engineered cementitious composites[J].Construction and Building Materials,2020,251:118917.

[5] 柴鑫伟,谢群,王欣,等.混杂纤维高韧性水泥基复合材料拉伸性能试验研究[J].建筑结构学报,2022,43(增刊1):353.

[6] 许子龙,谢群.混杂纤维增强高韧性水泥基复合材料的拉伸性能[J].济南大学学报(自然科学版),2021,35(1):68.

[7] 周宗伯,陈泽辛,余志辉,等.混杂纤维高延性水泥基复合材料高温后的压缩性能[J].功能材料,2023,54(7):7101.

[8] LAWLER J S,WILHELM T,ZAMPINI D,et al.Fracture processes of hybrid fiber-reinforced mortar[J].Materials and Structures,2003,36:197.

[9] CHEN Y,QIAO P Z.Crack growth resistance of hybrid fiber-reinforced cement matrix composites[J].Journal of Aerospace Engineering,2011,24(2):154.

[10] AHMED S F U,MAALEJ M.Tensile strain hardening behavior of hybrid steel-polyethylene fiber reinforced cementitious composites[J].Construction and Building Materials,2009,23(1):96.

[11] QIAN C X,STROEVEN P.Development of hybrid polypropylene-steel fibre-reinforced concrete[J].Cement and Concrete Research,2000,30(1):63.

[12] 王冲,于超,罗遥凌,等.不同侵蚀条件下水泥基材料碳硫硅钙石生成速度比较[J].同济大学学报(自然科学版),2015,43(5):748.

[13] 柴丽娟,郭丽萍,陈波,等.冻融和碳化交替作用下生态高延性水泥基复合材料的剪切性能[J].东南大学学报(自然科学版),2019,49(1):76.

[14] 苏骏,钱维民,郭锋,等.超低温对超高韧性水泥基复合材料抗压韧性影响试验[J].复合材料学报,2021,38(12):4325.

[15] ?AHMARAN M,?ZBAY E,YüCEL H E,et al.Effect of fly ash and PVA fiber on microstructural damage and residual properties of engineered cementitious composites exposed to high temperatures[J].Journal of Materials in Civil Engineering,2011,23(12):1735.

[16] ?AVDAR A.The effects of high temperature on mechanical properties of cementitious composites reinforced with polymeric fibers[J].Composites:Part B:Engineering,2013,45(1):78.

[17] POURFALAH S.Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures[J].Construction and Building Materials,2018,158:921.

[18] 付晔,李庆华,徐世烺.高温后纳米改性水泥基材料的残余抗折强度[J].深圳大学学报(理工版),2014,31(2):187.

[19] 彭宇,赵昕,徐世烺,等.高温后超高韧性水泥基复合材料的微观结构特征研究[J].电子显微学报,2019,38(3):236.

[20] 李曈,张晓东,刘华新,等.高温后混杂纤维混凝土力学性能试验研究[J].铁道科学与工程学报,2020,17(5):1171.

[21] 随志博.生态型超高韧性水泥基复合材料的基本力学性能研究[D].郑州:郑州大学,2020.

[22] 田砾,史建丽,赵铁军,等.应变硬化水泥基复合材料高温后弯曲韧性研究[J].硅酸盐通报,2015,34(4):1011.

[23] 张志刚,赵林,张沛,等.亚高温下不同粉煤灰掺量高延性混凝土的力学性能[J].东南大学学报(自然科学版),2020,50(5):831.

[24] JSCE.Method of test for flexural strength and flexural toughness of steel fiber reinforced concrete:JSCE SF4[S].Tokyo:JSCE,1984:45-51.

[25] CAO M L,ZHANG C,LYU H F,et al.Characterization of mechanical behavior and mechanism of calcium carbonate whisker-reinforced cement mortar[J].Construction and Building Materials,2014,66:89.

[26] 李黎,李宗利,高丹盈,等.高温对钢纤维-聚乙烯醇纤维-CaCO3晶须多尺度纤维/水泥复合材料弯曲性能和微观结构的影响[J].复合材料学报,2021,38(7):2326.