2024年 04期

Unmanned Aerial Vehicle Detection and Tracking Method Based on Computer Vision Technology


摘要(Abstract):

针对无人机因目标较小而难以检测、检测速度慢、难于跟踪等问题,提出一种基于目标检测YOLOv5s算法和目标跟踪DeepSORT算法的无人机检测跟踪方法;采用自采数据集和公开数据集构建无人机检测数据集,使用针对小目标的数据增强方法以扩充数据集多样性;选择合适的YOLOv5算法模型实现无人机目标的精准、快速检测,引入基于批标准化层的模型剪枝方法进一步提高模型检测速度;利用DeepSORT算法实现无人机目标的实时追踪;通过对比YOLOv3、 YOLOv4、 Fast R-CNN以及改进前的YOLOv5算法,验证了本文方法在无人机检测方面的性能。结果表明:提出的无人机检测跟踪方法的全类平均精度达到0.947,每秒浮点运算次数达到2.93×10~9,在无人机检测的精度和速度方面均具有优势。

关键词(KeyWords): 计算机视觉技术;无人机检测;目标跟踪;模型剪枝

基金项目(Foundation): 国家自然科学基金项目(51975332);; 山东省重点研发计划(重大科技创新工程)项目(2021CXGC011204);; 山东省自然科学基金(ZR2020QF029);; 山东建筑大学博士基金资助项目(X19023Z0101,XNBS20117)

作者(Author): 刘新锋,陈梦雅,李成龙,陈关忠,张晓

DOI: 10.13349/j.cnki.jdxbn.20240605.002

参考文献(References):

[1] 胡义强,杨骥,荆文龙,等.基于无人机遥感的海岸带生态环境监测研究综述[J].测绘通报,2022(6):18.

[2] TSOUROS D C,BIBI S,SARIGIANNIDIS P G.A review on UAV-based applications for precision agriculture[J].Information,2019,10(11):349.

[3] GUIMAR?ES N,PáDUA L,MARQUES P,et al.Forestry remote sensing from unmanned aerial vehicles:a review focusing on the data,processing and potentialities[J].Remote Sensing,2020,12(6):1046.

[4] STEINHOFF C.Use of drones for the rescue service and transport of medicaments:possibilities and risks[J].Der Unfallchirurg,2021,124(12):965-973.

[5] 蒋镕圻,白若楷,彭月平.低慢小无人机目标探测技术综述[J].飞航导弹,2020(9):100.

[6] 屈旭涛,庄东晔,谢海斌.“低慢小”无人机探测方法[J].指挥控制与仿真,2020,42(2):128.

[7] 马旗,朱斌,张宏伟,等.基于优化YOLOv3的低空无人机检测识别方法[J].激光与光电子学进展,2019,56(20):279.

[8] 薛猛,周学文,孔维亮.反无人机系统研究现状及关键技术分析[J].飞航导弹,2021(5):52.

[9] 赵玥萌,刘会刚.基于优化YOLOv4算法的低空无人机检测与跟踪[J].激光与光电子学进展,2022,59(12):397.

[10] 王峰,晋良念.知识辅助的无人机目标恒虚警率检测方法[J].桂林电子科技大学学报,2022,42(3):211.

[11] MARTíNEZ C,MONDRAGóN I F,OLIVARES-MéNDEZ M A,et al.On-board and ground visual pose estimation techniques for UAV control[J].Journal of Intelligent & Robotic Systems,2011,61(1):301.

[12] ROZANTSEV A,LEPETIT V,FUA P.Detecting flying objects using a single moving camera[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(5):879.

[13] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),June 27-30,2016,Las Vegas,USA.Piscataway:IEEE,2016:779.

[14] HASSAN S A,RAHIM T,SHIN S Y.Real-time UAV detection based on deep learning network[C]//2019 International Conference on Information and Communication Technology Convergence (ICTC),October 16-18,2019,Jeju,Korea (South).Piscataway:IEEE,2019:630.

[15] 李斌,张彩霞,杨阳,等.复杂场景下深度表示的无人机目标检测算法[J].计算机工程与应用,2020,56(15):118.

[16] 杨锐,黄山.改进的YOLOv4-tiny算法及其在无人机目标检测中的应用[J].电光与控制,2022,29(12):71.

[17] 刘洋,战荫伟.基于深度学习的小目标检测算法综述[J].计算机工程与应用,2021,57(2):37.

[18] 鞠默然,罗海波,王仲博,等.改进的YOLO V3算法及其在小目标检测中的应用[J],光学学报,2019,39(7):253.

[19] 江磊,崔艳荣.基于YOLOv5的小目标检测[J].电脑知识与技术,2021,17(26):131.

[20] LUO W H,XING J L,MILAN A,et al.Multiple object tracking:a literature review[J].Artificial Intelligence,2021,293:103448.

[21] ZHENG Y,CHEN Z,LV D L,et al.Air-to-air visual detection of micro-UAVs:an experimental evaluation of deep learning[J].IEEE Robotics and Automation Letters,2021,6(2):1020.

[22] KISANTAL M,WOJNA Z,MURAWSKI J,et al.Augmentation for small object detection[EB/OL].(2019-02-19)[2023-04-01].https://doi.org/10.48550/arXiv.1902.07296.

[23] LIU Z,LI J G,SHEN Z Q,et al.Learning efficient convolutional networks through network slimming[C]//2017 IEEE International Conference on Computer Vision (ICCV),October 22-29,2017,Venice,Italy.Piscataway:IEEE,2017:2755.