2023年 03期

基于鲸鱼优化算法改进长短期记忆神经网络的资源推荐

Resource Recommendation Based on Long Short Term Memory Neural Network Improved by Using Whale Optimization Algorithm


摘要(Abstract):

为了改善资源推荐算法的性能,提出基于鲸鱼优化算法(WOA)改进长短期记忆神经网络(LSTM)的资源推荐算法;首先提取资源和用户特征,构建特征差异值加权函数;然后,以资源-用户特征作为输入,建立基于LSTM的资源推荐算法,通过输入门、遗忘门、输出门及记忆节点对历史资源推荐数据按权重进行遗忘与筛选,有选择性地挑选部分数据进行循环迭代训练;考虑到LSTM的门操作需要设置的参数较多,引入WOA进行参数智能优化求解,提出WOA-LSTM算法,以提高LSTM的参数优化的精度及效率。结果表明,通过合理设置WOA参数,可以有效改善LSTM的资源推荐性能,与常用资源推荐算法相比,所提出的WOA-LSTM算法具有更高的推荐精度及稳定性。

关键词(KeyWords): 资源推荐;长短期记忆神经网络;鲸鱼优化算法;特征差异值

基金项目(Foundation): 国家自然科学基金项目(61871204);; 湖南省教育厅科学研究项目优秀青年项目(22B1028,19B397);; 福建省科技计划项目引导性项目(2018H0028);; 湖南信息学院2022年度校级科研项目(XXY022QN04)

作者(Author): 仇焕青,陈曙光,龚芝,张福泉

DOI: 10.13349/j.cnki.jdxbn.20230227.001

参考文献(References):

[1] HAN L,LI H.Visualization analysis of online learning resource recommendation based on CiteSpace[J].International Journal of Social Science and Education Research,2021,4(10):73.

[2] 杨智强,殷钊,王衡.结合用户交互行为和资源内容的资源推荐[J].计算机辅助设计与图形学学报,2014,26(5):747.

[3] 东苗.基于知识图谱的多目标学习资源推荐算法[J].计算机系统应用,2021,30(4):139.

[4] 李浩君,杨琳,张鹏威.基于多目标优化策略的在线学习资源推荐方法[J].模式识别与人工智能,2019,32(4):306.

[5] WANG J Y,LI J,WANG X,et al.Air quality prediction using CT-LSTM[J].Neural Computing and Applications,2021,33(10):4779.

[6] PARK K,CHOI Y,CHOI W J,et al.LSTM-based battery remaining useful life prediction with multi-channel charging profiles[J].IEEE Access,2020,8:20786.

[7] BUKHARI A H,RAJA M A Z,SULAIMAN M,et al.Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting[J].IEEE Access,2020,8:71326.

[8] ELSHEIKH A H,KATEKAR V P,MUSKENS O L,et al.Utilization of LSTM neural network for water production forecasting of a stepped solar still with a corrugated absorber plate[J].Process Safety and Environmental Protection,2021,148:279.

[9] HE K J,JI L,WU C W D,et al.Using SARIMA-CNN-LSTM approach to forecast daily tourism demand[J].Journal of Hospitality and Tourism Management,2021,49:28.

[10] QIU Y G,ZHOU J,KHANDELWAL M,et al.Performance evaluation of hybrid WOA-XGBoost,GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration[J].Engineering with Computers,2022,38:4145.

[11] LI Z M,YAZDANI B,ASTERIS P G,et al.A hybrid GEP and WOA approach to estimate the optimal penetration rate of TBM in granitic rock mass[J].Soft Computing,2021,25(17):11880.

[12] NASROLLAHZADEH S,MAADANI M,POURMINA M A.Optimal motion sensor placement in smart homes and intelligent environments using a hybrid WOA-PSO algorithm[J].Journal of Reliable Intelligent Environments,2022,8:345.

[13] SAMANTARAY S,SAHOO A.Prediction of suspended sediment concentration using hybrid SVM-WOA approaches[J].Geocarto International,2022,37(19):5621.

[14] 覃忠台,张明军.基于协同过滤算法的学习资源推荐模型研究[J].计算机技术与发展,2021,31(9):31.

[15] 赵春霞,赵营颖,宋学坤.基于频繁项集的多源异构数据并行聚类算法[J].济南大学学报(自然科学版),2022,36(4):440.

[16] 樊海玮,史双,张博敏,等.基于MLP改进型深度神经网络学习资源推荐算法[J].计算机应用研究,2020,37(9):2629.