刘丹丹1, 朱鸿飞1, 李德文2, 郭胜均2, 汪春梅2
(1. 黑龙江科技大学 电气与控制工程学院, 黑龙江 哈尔滨 150022; 2. 中煤科工集团重庆研究院有限公司, 四川 重庆 400037)
引用格式:
刘丹丹, 朱鸿飞, 李德文, 等. 基于科氏质量流量计的微米级煤尘和岩尘颗粒分类方法[ J]. 中国粉体技术, 2024,30(1): 132-143.
LIU D D, ZHU H F, LI D W, et al. Classification of micron coal dust and rock dust particles based on Coriolis mass flow meter[J]. China Powder Science and Technology, 2024, 30 (1): 132-143.
DOI:10.13732 / j.issn.1008-5548.2024.01.013
收稿日期: 2023-08-07,修回日期:2023-11-22,上线日期:2023-12-13。
基金项目:国家重点研发计划项目,编号:2017YFC0805208。
第一作者简介:刘丹丹(1978—),女,教授,博士,硕士生导师,研究方向为矿山安全监测与电气设备控制。 E-mail: liudandan2003@163.com。
摘要:【目的】岩尘的粒径比煤尘的小得多,更容易被吸入到肺中,危害较大。 为了解决煤尘和岩尘混合颗粒的分类问题,提出一种微米级煤尘和岩尘混合颗粒的测量方法。 【方法】首先采用环形静电传感器进行前端流体流量的测定,根据科氏质量流量计的测量原理,研究测量管两侧的时间差和流体的质量流量的关系;其次采用 ANSYS 有限元软件进行双向流固耦合,验证对煤尘和岩尘混合颗粒进行分类的可行性;最后对测量管进行静力学分析以及数值模拟分析,实现科氏质量流量计对微米级煤尘和岩尘混合颗粒的分类判别。 【结果】在科氏质量流量计的同一个测量管道入口处,颗粒的流入速度与测量时间差正相关;谐振式 U 型管的激振频率应为二阶振型对应的固有频率 113. 11 Hz;当煤尘和岩尘颗粒混合粒径不同时,静力学参数和时间差随着煤尘的体积分数的增大而减小,并且全岩尘和全煤尘的时间差明显与混合颗粒的不同;当煤尘和岩尘混合颗粒粒径相同时,时间差随着煤尘的体积流量增大而增大,关系曲线的陡度也随着增大。当煤尘体积分数<50%时,煤尘和岩尘的混合颗粒的粒径越大时间差越大;当煤尘体积分数≥50%时,煤尘和岩尘的混合颗粒的粒径越大时间差越小。 【结论】煤尘颗粒和岩尘颗粒具有鲜明且不同的分类判别特征,微米级煤尘和岩尘混合颗粒分类具有可行性,可实现科氏质量流量计对煤尘和岩尘混合颗粒的实时在线精确分类。
关键词: 煤尘颗粒; 岩尘颗粒; 科氏质量流量计; 静电传感器; 有限元软件; 双向流固耦合
Abstract
Objective The particle size of rock dust is much smaller than that of coal dust, allowing it more inhalable and thus more harmful to the lungs. To solve the classification problem of mixed particles containing both coal dust and rock dust, a micrometer measurement method for such mixed particles is proposed.
Methods Firstly, a model for a ring electrostatic sensor was established. Subsequently, according to the measurement principle of resonant U-type coriolis mass flow meter, it was proved that the mass flow of fluid could be calculated by measuring the time difference between the two sides of the tube. Secondly, considering the structure parameters of the resonant U-shaped pipe, the modal analysis of the resonant U-shaped measuring pipe was carried out by ANSYS Model software. The analysis determined that the excitation frequency of coriolis mass flow meter. Thirdly, the measuring process of coriolis mass flow meter was simulated using the two-way fluid-solid coupling approach. The theoretical feasibility of classifying mixed particles was verified by this simulation, coupled with the coriolis mass flow meter device. Finally, the relationship between particle density and mechanical properties of coal dust and rock dust was analyzed. With the change of coal dust volume fraction, the static parameters and time difference of coal dust and rock dust mixed particles with different particle sizes were studied. The mixed particles of coal dust and rock dust with the same particle size were studied with the change of coal dust volume fraction and particle velocity.
Results and Discussion In the same measuring pipe inlet of coriolis mass flow meter, the inflow velocity of particles is positively correlated with the measurement time difference. Modal analysis reveal that the excitation frequency of coriolis mass flow meter should be the natural frequency 113. 11 Hz, corresponding to the second order mode of the resonant U-type measuring tube. When coal dust and rock dust particles with different particle sizes are mixed, it is observed that the maximum static pressure, the total maximum shape variable, the maximum equivalent stress and the time difference decrease with the volume fraction of coal dust particles increases. The time difference of total rock dust and total coal dust differs from that of mixed particles. Specifically, when coal dust and rock dust particles of the same particle size are mixed, the time difference decreases sharply with the increase of coal dust volume fraction. The time difference increases with the increase of the volume flow rate of mixed particles. When the coal dust volume fraction is less than 50%, the larger the particle size, the larger the time difference. When the coal dust volume fraction is greater than or equal to 50%, the larger the particle size, the smaller the time difference.
Conclusion Coal dust particles and rock dust particles have distinct and different classification and discrimination characteristics. The feasibility of micrometer classification of mixed particles including coal dust and rock dust is verified. The coriolis mass flow meter demonstrates the capability to accurately classify the mixed particles of coal dust and rock dust in real time.
Keywords: coal dust particle; rock dust particle; Coriolis mass flow meter; electrostatic sensor; finite element software; two-way fluid-solid coupling
参考文献(References):
[1]任喜洋, 邓锋, 高兵, 等. 推动能源资源结构向绿色低碳转型[J]. 中国国土资源经济, 2021, 34(12): 48-54, 76.
REN X Y, DENG F, GAO B, et al. Promote the transformation of energy and resource structure to green and low-carbon development[J]. Natural Resource Economics of China, 2021, 34(12): 48-54, 76.
[2]刘峰, 郭林峰, 赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报, 2022, 47(1): 1-15.
LIU F, GUO L F, ZHAO L Z. Research on coal safety range and green low-carbon technology path under the dual-carbon background[J]. Journal of China Coal Society, 2022, 47(1): 1-15.
[3]陈浮, 于昊辰, 卞正富, 等. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报, 2021, 46(6): 1808-1820.
CHEN F, YU H C, BIAN Z F, et al. How to handle the crisis of coal industry in china under the vision of carbon neutrality [J]. Journal of China Coal Society, 2021, 46(6): 1808-1820.
[4]郭明明. 煤矿粉尘标型特征研究[D]. 焦作: 河南理工大学, 2017.
GUO M M. Research of the typomorphic characteristics of coal mine dust [ D]. Jiaozuo:Henan Polytechnic University,2017.
[5]张润泽. 新形势下煤炭洗选加工现状与发展趋势[J]. 煤炭加工与综合利用, 2021(9): 47-50, 54.
ZHANG R Z. Contemporary industry of coal washing and processing and the trend of their development in the new era[ J].Coal Processing & Comprehensive Utilization, 2021(9): 47-50, 54.
[6]LIU Y J, WANG L Y, LUO Q, et al. A novel method of coriolis flowmeter phase difference measurement based on improved correlation analysis method[J]. Flow Measurement and Instrumentation, 2021, 80: 101970.
[7]LUO Z F, ZHAO Y M, LV B, et al. Dry coal beneficiation technique in the gas-solid fluidized bed: a review[J]. International Journal of Coal Preparation and Utilization, 2019, 42(4): 986-1014.
[8]步奕. 科里奥利流量计多相流测量与校正方法研究[D]. 镇江: 江苏大学, 2021.
BU Y. Development of a novel method of multiphase flow metering in coriolis flow meter[D]. Zhenjiang: Jiangsu University,2021.
[9]SHEN T A, HUANG S Y, CHEN P, et al. A novel phase difference measurement method for coriolis mass flowmeter based on correlation theory[J]. Energies, 2022, 15(10): 3710.
[10]SHAVRINA E, ZENG Y, KHOO B C, et al. The investigation of gas distribution asymmetry effect on coriolis flowmeter accuracy at multiphase metering[J]. Sensors, 2022, 22(20): 7739.
[11]SHAVRINA E, NGUYEN V T, YAN Z, et al. Fluid-solid interaction simulation methodology for coriolis flowmeter operation analysis[J]. Sensors, 2021, 21(23): 8105.
[12]魏存厚, 聂文, 刘强, 等. 协同通风影响全断面隧道掘进机工作面岩尘分布规律研究[J]. 中国安全生产科学技术,2020, 16(5): 76-81.
WEI C H, NIE W, LIU Q, et al. Study on influence of collaborative ventilation on distribution laws of rock dust at working face of full face tunnel boring machine[J]. Journal of Safety Science and Technology, 2020, 16(5): 76-81.
[13]马鹤. TBM 施工隧道气载岩尘污染扩散规律与控制研究[D]. 青岛: 山东科技大学, 2018.
MA H. TBM excavating tunnel of airborne rock dust pollution diffusion law and control research[D]. Qingdao:Shandong University of Science and Technology, 2018.
[14]ISMAIL F B, NIZAR F O, HASINI H, et al. Computational fluid dynamics (CFD) investigation on associated effect of classifier blades lengths and opening angles on coal classification efficiency in coal pulverizer[J]. Case Studies in Chemical and Environmental Engineering, 2022, 6(23): 100266.
[15]GACE D A. On the performance of a Coriolis mass flowmeter (CMF): experimental measurement and FSI simulation[ J/OL]. International Journal of Metrology and Quality Engineering, 2022, 13(3): 1-15[2023-11-20]. https: / / www. etrology-journal. org / articles/ ijmqe / full_html / 2022 / 01 / ijmqe210020 / ijmqe210020. html.
[16]LU J M, LIU L, CHEN G Y, et al. Flow calibration method for gas-liquid two-phase flow of Coriolis flowmeter based on LSTM[J]. Journal of Physics: Conference Series, 2022, 2369(1): 012031.
[17]PEI X X, LI X, XU H H, et al. Flow-induced vibration characteristics of the U-type Coriolis mass flowmeter with liquid hydrogen[J]. Journal of Zhejiang University: Science A, 2022, 23(6): 495-504.
[18]MURNANE S N, BARNES R N, WOODHEAD S R, et al. Electrostatic modelling and measurement of airborne particle concentration[J]. IEEE Transactions on Instrumentation and Measurement, 1996, 45(2): 488-492.
[19]刘丹丹, 景明明, 汤春瑞, 等. 基于静电感应的小粒径粉尘浓度测量装置优化研究[ J]. 煤炭科学技术, 2019,47(7): 171-175.
LIU D D, JING M M, TANG C R, et al. Optimization study of small particle size dust concentration measurement device based on electrostatic induction[J]. Coal Science and Technology, 2019, 47(7): 171-175.
[20]宋帅. 科里奥利质量流量计的结构分析与相位差算法研究[D]. 重庆: 重庆大学, 2018.
SONG S. Research on structure analysis and phase difference algorithm of Coriolis mass flowmeter [ D]. Chongqing:Chongqing University, 2018.
[21]刘颖. 科里奥利质量流量计动态数值分析及结构优化[D]. 上海: 上海交通大学, 2013.
LIU Y. Dynamic numerical analysis and structural optimization of Coriolis mass flowmeter[D]. Shanghai: Shanghai Jiao Tong University, 2013.