ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第6期
<返回第6期

超微粉碎机的物料粉碎分级实验与仿真分析

Experiment and simulation analysis of material crushing andclassification of ultrafine pulverizer

梅 潇, 田 源, 刘祥伟

(上海海事大学物流工程学院, 上海201306)


引用格式:梅潇, 田源, 刘祥伟. 超微粉碎机的物料粉碎分级实验与仿真分析[J]. 中国粉体技术, 2023, 29(6): 72-81.

MEI X, TIAN Y, LIU X W. Experiment and simulation analysis of material crushing and classification of ultrafine pulverizer[J]. China Powder Science and Technology, 2023, 29(6): 72-81.

DOI:10.13732/j.issn.1008-5548.2023.06.007

收稿日期:2023-05-16,修回日期:2023-09-15,在线出版时间:2023-10-16 15:20。

基金项目:上海市科委浦江人才计划项目,编号:21PJ1404600。

第一作者简介:梅潇(1974—),女,副教授,博士,硕士生导师,研究方向为结构设计与安全评估、现代设计方法以及多相场仿真和实验。E-mail: xiaomei@shmtu.edu.cn。


摘要:为了获得超微粉碎机最优的粉碎效果并保证出料颗粒细微且均匀,在一定的刀盘转速条件下使用超微粉碎机进行粉碎实验;为了优选喂料频率,分析不同喂料频率对刀盘粉碎效果的影响;对比试样的粒径分布,分析刀盘和分级轮对物料的粉碎与分级效果;采用Fluent软件将超微粉碎机内部流场可视化,分析不同分级轮转速条件下物料在出料口的质量流率分布以及分级区域的流场状态。结果表明:当刀盘转速为1 232 r/min时,喂料频率对颗粒粒径的分布影响较小,优选喂料频率为20 Hz;分级轮转速对粒径>40 μm的颗粒的分级效果的影响更大,但对粒径>0.5~40 μm的颗粒的分级影响较小;随着分级轮转速的增大,物料出口处的细颗粒含量增大,粒径减小;当刀盘转速为1 232 r/min、分级轮转速为900 r/min时,粉碎腔内部的速度等值线分布最均匀而且流体流动平稳,切向速度与压力分布的对称性最好,气流在轴向方向上整体表现为上升运动,有利于物料稳定地出料;较优分级轮转速为900 r/min。

关键词:超微粉碎; 气-固两相流; 颗粒分级; 分级轮转速; 数值模拟

Abstract:In order to obtain the best crushing effect of the ultrafine pulverizer and ensure the fine and uniform discharge particles, the ultrafine pulverizer was used for crushing experiments under a certain cutter head speed. In order to optimize the feeding frequency, the influence of different feeding frequency on the crushing effect of cutter head was analyzed. By comparing the particle size distribution of experimental samples, the crushing and grading effect of cutter and grading wheel were analyzed. Fluent software was used to visualize the flow field inside the ultrafine pulverizer, and the mass flow rate distribution of materials at the discharge port and the flow field state in the grading region were analyzed under different grading wheel speeds. The result shows that when the cutter speed is 1 232 r/min, the feeding frequency has little influence on the particle size distribution, and the optimal feeding frequency is 20 Hz. The rotating speed of the grading wheel has greater effects on the grading effect when the particle size is more than 40 μm, but has less effects when the particle size of is from 0.5 to 40 μm. With the increase of the rotation speed of the grading wheel, the content of fine particles at the outlet of the material increases and the particle size decreases. When the cutter speed is 1 232 r/min and the grading wheel speed is 900 r/min, the velocity contour distribution in the crushing chamber is the most uniform and the fluid flow is stable, the symmetry of tangential velocity and pressure distribution is the best, and the air flow shows an overall upward movement in the axial direction, which is conducive to the stable discharge of materials. The optimal rotational speed of the grading wheel is 900 r/min.

Keywords:ultrafine pulverization; gas-solid two-phase flow; particle classification; rotational speed of grading wheel; numerical simulation


参考文献(References):

[1]盖国胜, 陶珍东, 丁明. 粉体工程[M]. 北京: 清华大学出版社, 2009: 157-159.

GAI G S, TAO Z D, DING M. Powder technology[M]. Beijing: Tsinghua University Press, 2009: 157-159.

[2]卢道铭, 范怡平, 卢春喜. 颗粒空气分级技术研究进展[J]. 中国粉体技术, 2020, 26(6): 11-24.

LU D M, FAN Y P, LU C X. Advances in research on granular air classification[J]. China Powder Science and Technology, 2020, 26(6): 11-24.

[3]任成, 刘家祥, 于源. 导风叶片对涡流空气分级机内流场的影响[J]. 化工进展, 2019, 38(9): 3988-3994.

REN C, LIU J X, YU Y. Effect of guide-vane on flow field in turbo air classifiers[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 3988-3994.

[4]ZENG Y, HUANG B W, QIN D X, et al. Numerical and experiment investigation on novel guide vane structures of turbo air classifier[J]. Processes, 2022, 10(5): 844.

[5]MOU X L, JIA F C, FANG Y, et al. CFD-based structural optimization of rotor cage for high-efficiency rotor classifier[J]. Processes, 2021, 9(7): 1148.

[6]于昂, 俞建峰. 变截面叶片分级轮对气流分级机分级性能的影响[J]. 包装与食品机械, 2021, 39(4): 78-84.

YU A, YU J F. Influence of variable-section blade classification wheel on classification performance of airflow classifier[J]. Packaging and Food Machinery, 2021, 39(4): 74-84.

[7]YU Y, REN W J, LIU J X. A new volute design method for the turbo air classifier[J]. Powder Technology, 2019, 348: 65-69.

[8]BETZ M, GLEISS M, NIRSCHL H. Effects of flow baffles on flow profile, pressure drop and classification performance in classifiers[J]. Processes, 2021, 9(7): 1213.

[9]ZENG Y, ZHANG S, ZHOU Y, et al. Numerical simulation of a flow field in a turbo air classifier and optimization of the process parameters[J]. Processes, 2020, 8(2): 237.

[10]SUN Z P, LIANG L L, LIU C Y, et al. CFD simulation and performance optimization of a new horizontal turbo air classifier[J]. Advanced Powder Technology, 2021, 32(4): 977-986.

[11]SUN Z P, LIANG L L, YANG G. Structural optimization of vortex finder for a centrifugal air classifier[J]. Chemical Engineering Research and Dessign, 2021, 166: 220-226.

[12]LI H, HE Y Q, YANG J S, et al. Impact of particle density on the classification efficiency of the static air classifier in vertical spindle mill[J]. Physicochemical Problems of Mineral Processing, 2019, 55(2): 494-503.

[13]ALTUN O. Air classification performances of the components within the varied feed blends[J]. Powder Technology, 2022, 399: 117092.

[14]DENMUD N, BAITE K, PLOOKPHOL T, et al. Effects of operating parameters on the cut size of turbo air classifier for particle size classification of SAC305 lead-free solder powder[J]. Processes, 2019, 7(7): 427.

[15]ESWARAIAH C, SONI R K, TRIPATHY S K, et al. Particle classification optimization of a circulating air classifier[J]. Mineral Processing and Extractive Metallurgy Review, 2019, 40(5): 314-322.

[16]PETIT H A, PAULO C J, CABRERA O A, et al. Modelling and optimization of an inclined plane classifier using CFD-DPM and the Taguchi method[J]. Applied Mathematical Modelling, 2020, 77(1): 617-634.

[17]ZHOU Y H, SHEN W. Numerical simulation of particle classification in new multi-product classifier[J]. Chemical Engineering Research and Dessign, 2022, 177: 484-492.

[18]楼琦, 赵介军, 俞建峰. 基于涡流空气分级机的淀粉分级数值模拟与优化[J]. 食品与机械, 2019, 35(9): 116-121.

LOU Q, ZHAO J J, YU J F. Numerical simulation and optimization of starch classification in turbo air classifiers[J]. Food and Machinery, 2019, 35(9): 116-121.

[19]刘华洁, 吴文秀, 田云吉. 涡轮式气流分级机压降分析及流场模拟[J]. 石油机械, 2019, 47(6): 95-100.

LIU H J, WU W X, TIAN Y J. Pressure drop analysis and flow field simulation of turbine air classifier[J]. China Petroleum Machinery, 2019, 47(6): 95-100.

[20]冯乐乐, 吴玉新, 张海, 等. 转轮分离器风量和转速对叶片流道涡的影响[J]. 清华大学学报(自然科学版), 2020, 60(6): 493-499.

FENG L L, WU Y X, ZHANG H, et al. Effect of air flow rate and rotational speed on vortices between neighboring blades in turbo air classifiers[J]. Journal of Tsinghua Univercity(Science and Technology), 2020, 60(6): 493-499.