ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第3期
<返回第3期

等离子体法制备及改性石墨烯粉体的研究进展

Research progress in plasma preparation and modification of graphene powder

原晓菲a,钟 睿a,洪若瑜a,陈 剑b

(福州大学 a. 石油化工学院; b. 电气工程与自动化学院,福建 福州 350108)


DOI:10.13732/j.issn.1008-5548.2022.03.012

收稿日期: 2021-12-21, 修回日期:2022-04-21,在线出版时间:2022-05-06。

基金项目:中央引导地方科技发展专项项目,编号:2017L3014;福建省闽江学者奖励计划项目,编号:闽人社批复[2016]149号;福建省战略性新兴产业研发基金项目,编号:82918001;福建省新能源发电与电能变换重点实验室项目,编号:KLIF-202102。

第一作者简介:原晓菲(1997—),女,硕士研究生,研究方向为石墨烯粉体的等离子体制备。E-mail: xiaof.yuan@qq.com。

通信作者简介:洪若瑜(1966—),男,闽江学者特聘教授,博士,博士生导师,研究方向为纳米材料的制备与应用。E-mail: rhong@fzu.edu.cn。


摘要:综述等离子体自上而下和自下而上制备石墨烯粉体的方法,等离子体原位掺杂、后处理掺杂、刻蚀等石墨烯基材料改性工艺,石墨烯及掺杂石墨烯粉体在超级电容器、锂电池和电催化剂等领域应用。提出等离子体技术制备石墨烯粉体材料工艺具有简单快速、有效可控、环境友好等优势,可通过等离子体技术实现石墨烯表面功能化,以提高其电化学和电催化性能。认为开发等离子体法工艺对工业化生产石墨烯粉体具有积极意义,经等离子体法改性的石墨烯粉体材料可以拓宽石墨烯基粉体材料的应用领域。

关键词:等离子体;石墨烯;掺杂;电化学;电催化

Abstract:The methods of plasma top-down and bottom-up preparation of graphene powder, modification technology of plasma in-situ, plasma post-treatment adulteration and plasma etching of graphene-based materials, and the application of supercapacitors, lithium batteries and electrocatalysts of graphene and doped graphene powder were reviewed. It is proposed that the preparation of graphene powder materials by plasma technology is simple and rapid, effective and controllable, and environmentally friendly. The surface functionalization of graphene can be realized by plasma technology to improve its electrochemical and electrocatalytic properties.It is concluded that the development of plasma process is of positive significance to the industrial production of graphene powder, and the graphene powder materials modified by plasma can broaden the application field of graphene-based powder materials.

Keywords:plasma; graphene; heteroatom doping; electrochemistry; electrocatalysis


参考文献(References):

[1]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films[J].Science, 2004, 306(5696): 666-669.

[2]张达, 戴永年, 梁风.电弧法制备石墨烯:工艺参数,生长机理,存在的问题与对策[J].材料导报, 2017, 5(31): 64-71.

[3]ZHOU L Z, FOX L, WLODEK M, et al.Surface structure of few layer graphene[J].Carbon, 2018, 136: 255-261.

[4]CHEN J F, DUAN M, CHEN G H.Continuous mechanical exfoliation of graphene sheets via three-roll mill[J].Journal of Materials Chemistry, 2012, 22(37): 19625-19628.

[5]TRABELSI A B, KUSMARTSEV F V, KUSMARTSEVA A, et al.Raman spectroscopy imaging of exceptional electronic properties in epitaxial graphene grown on SiC[J].Nanomaterials, 2020, 10(11): 2234.

[6]MISHRA N, BOECKL J, MOTTA N, et al.Graphene growth on silicon carbide: a review[J].Physica Status Solidi A:Applications and Materials Science, 2016, 213(9): 2277-2289.

[7]田杰,郭丽,沈嵩,等.液相剥离法制备石墨烯研究进展[J].中国粉体技术, 2017, 23(3): 45-49.

[8]LI Z L, YOUNG R J, BACKES C, et al.Mechanisms of liquid-phase exfoliation for the production of graphene[J].ACS Nano, 2020, 14(9): 10976-10985.

[9]WU W L, YU B W.Corn flour nano-graphene prepared by the hummers redox method[J].ACS Omega, 2020, 5(46): 30252-30256.

[10]OLIVEIRA A E F, BRAGA G B, TARLEY C R T, et al.Thermally reduced graphene oxide: synthesis, studies and characterization[J].Journal of Materials Science, 2018, 53(17): 12005-12015.

[11]WANG J B, REN Z, HOU Y, et al.A review of graphene synthesis at low temperatures by CVD methods[J].New Carbon Materials, 2020, 35(3): 193-208.

[12]LI X S, CAI W W, AN J H, et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J].Science, 2009, 324(5932): 1312-1314.

[13]PARVEZ K, LI R J, PUNIREDD S R, et al.Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics[J].ACS Nano,2013, 7(4): 3598-3606.

[14]GUO Q, HUANG D G, LUO C, et al.Electrochemical stripping features of graphite and its products characterization[J].Fullerenes, Nanotubes and Carbon Nanostructures, 2017, 25(2): 79-85.

[15]ASL P J, RAJULAPATI V, GAVAHIAN M, et al.Non-thermal plasma technique for preservation of fresh foods: a review[J].Food Control, 2022, 134: 108560.

[16]CONRADS H, SCHMIDT M.Plasma generation and plasma sources[J].Plasma Sources Science and Technology, 2000, 9(4): 441-454.

[17]OSTRIKOV K, CVELLBAR U, MURPHY A B.Plasma nanoscience: setting directions, tackling grand challenges[J].Journal of Physics D: Applied Physics, 2011, 44(17): 174001.

[18]WANG C,LI D N,LU Z S, et al.Continuous preparation of carbon nano-onions in a non-thermal plasma process[J].Materials Letters, 2020, 272: 127808.

[19]SUN D L, HONG R Y, WANG F, et al.Synthesis and modification of carbon nanomaterials via AC arc and dielectric barrier discharge plasma[J].Chemical Engineering Journal, 2016, 283: 9-20.

[20]PAJOOTAN E, YE M N, ZHANG M Y, et al.Plasma-functionalized multi-walled carbon nanotubes directly grown on stainless steel meshes as supercapacitor electrodes[J].Journal of Physics D: Applied Physics, 2022, 55(19): 194001.

[21]LI O L, PHAM N N T, KIM J, et al.Insights on boosting oxygen evolution reaction performance via boron incorporation into nitrogen-doped carbon electrocatalysts[J].Applied Surface Science, 2020, 528: 146979.

[22]DATO A, RADMILOVIC V, LEE Z, et al.Substrate-free gas-phase synthesis of graphene sheets[J].Nano Letters, 2008, 8(7): 2012-2016.

[23]WANG C, SONG M, CHEN X H, et al.Effects of buffer gases on graphene flakes synthesis in thermal plasma process at atmospheric pressure[J].Nanomaterials, 2020, 10(2): 309.

[24]WU A J, LI X D, YAN J H, et al.Co-generation of hydrogen and carbon aerosol from coalbed methane surrogate using rotating gliding arc plasma[J].Applied Energy, 2017, 195: 67-79.

[25]BORAND G, AKCAMLI N, UZUNSOY D.Structural characterization of graphene nanostructures produced via arc discharge method[J].Ceramics International, 2021, 47(6): 8044-8052.

[26]FORTUGNO P, MUSIKHIN S, SHI X, et al.Synthesis of freestanding few-layer graphene in microwave plasma: the role of oxygen[J].Carbon, 2022, 186: 560-573.

[27]ZAIKOVSKII A V, SMOVZH D V, SAKHAPOV S Z, et al.Morphological and structural features of materials formed in carbon plasma of arc discharge[J].Journal of Physics Conference Series, 2018, 1105: 012135.

[28]MA J, CHEN X H, SONG M, et al.Study on formation mechanism of three types of carbon nanoparticles during ethylene pyrolysis in thermal plasmas[J].Diamond and Related Materials, 2021, 117: 108445.

[29]KOSTOGLOU N, LIAO C W, WANG C Y, et al.Effect of Pt nanoparticle decoration on the H2 storage performance of plasma-derived nanoporous graphene[J].Carbon, 2021, 171: 294-305.

[30]AKADAAB K, OBATA S, SAIKI K.Radio-frequency plasma assisted reduction and nitrogen doping of graphene oxide[J].Carbon, 2022, 189: 571-578.

[31]SON H, KIM S, EE J H, et al.Dye-synthesized N, S co-doped carbon via plasma engineering as metal-free oxygen reduction reaction electrocatalysts[J].Journal of Physics D: Applied Physics, 2021, 55(7): 074001.

[32]MALESEVIC A, VITCHEV R, SCHOUTEDEN K, et al.Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition[J].Nanotechnology, 2008, 19(30): 305604.

[33]MIAO R X, ZHAO C H, WANG S Q, et al.Direct growth of graphene films without catalyst on flexible glass substrates by PECVD[J].Chinese Physics B, 2021, 30(9): 098101.

[34]SHASHURIN A, KEIDAR M.Synthesis of 2D materials in arc plasmas[J].Journal of Physics D: Applied Physics, 2015, 48(31): 314007.

[35]SUBRAHMANYAM K S, PANCHAKARLA L S, GOVINDARAJ A, et al.Simple method of preparing graphene flakes by an arc-discharge method[J].Journal of Physical Chemistry C, 2009, 113(11): 4257-4259.

[36]ROSLAN M S, HAIDER Z, CHAUDHARY K T.Characterization of the impact of nanoparticles on micro strain in 2D graphene synthesized by arc discharge plasma[J].Materials Today Communications, 2021, 25: 101285.

[37]TAN H, WANG D G, GUO Y B.A Strategy to synthesize multilayer graphene in arc-discharge plasma in a semi-opened environment[J].Materials, 2019, 12(14): 2279.

[38]WONG C H A, JANKOVSKY O, SOFER Z, et al.Vacuum-assisted microwave reduction/exfoliation of graphite oxide and the influence of precursor graphite oxide[J].Carbon, 2014, 77: 508-517.

[39]ISLAM A, MUKHERJEE B, PANDEY K K, et al.Ultra-fast, chemical-free, mass production of high quality exfoliated graphene[J].ACS Nano, 2021, 15(1): 1775-1784.

[40]SINGH M, SENGUPTA A, ZELLE K, et al.Effect of hydrogen concentration on graphene synthesis using microwave-driven plasma-mediated methane cracking[J].Carbon, 2019, 143: 802-813.

[41]JASEK O, TOMAN J, SNIRER M, et al.Microwave plasma-based high temperature dehydrogenation of hydrocarbons and alcohols as a single route to highly efficient gas phase synthesis of freestanding graphene[J].Nanotechnology, 2021, 32(50): 505608.

[42]MA X T, LI S R, CHAUDHARY R, et al.Carbon nanosheets synthesis in a gliding arc reactor: on the reaction routes and process parameters[J].Plasma Chemistry and Plasma Processing, 2020, 41(1): 191-209.

[43]ZHONG R P, HONG R Y.Continuous preparation and formation mechanism of few-layer graphene by gliding arc plasma[J].Chemical Engineering Journal, 2020, 387: 124102.

[44]WANG C, SUN L, DAI X Y, et al.Continuous synthesis of graphene nano-flakes by a magnetically rotating arc at atmospheric pressure[J].Carbon, 2019, 148: 394-402.

[45]AISSOU T, BRAIDY N, VEILLEUX J.A new one-step deposition approach of graphene nanoflakes coating using a radio frequency plasma: synthesis, characterization and tribological behaviour[J].Tribology International, 2022, 167: 107406.

[46]ZHANG H B, CAO T F, CHENG Y.Preparation of few-layer graphene nanosheets by radio-frequency induction thermal plasma[J].Carbon, 2015, 86: 38-45.

[47]SHI H K, WU W Q, WEI F, et al.Three elements for the preparation of vertical graphene by RF-PECVD method[J].Flat Chem, 2021, 30: 100306.

[48]MIAO R X, ZHAO C H, WANG S Q, et al.Direct growth of graphene films without catalyst on flexible glass substrates by PECVD[J].Chinese Physics: B, 2021, 30(9): 098101

[49]HAN Z J, MURDOCK A T, SEO D H, et al.Recent progress in plasma-assisted synthesis and modification of 2D materials[J].2D Materials, 2018, 5(3): 032002.

[50]TASYGANOV D, BUNDALESKA N, DIAS A, et al.Microwave plasma-based direct synthesis of free-standing N-graphene[J].Physical Chemistry Chemical Physics, 2020, 22(8): 4772-4787.

[51]SONG M, WANG C, CHEN X H, et al.Large-scale in-situ synthesis of nitrogen-doped graphene using magnetically rotating arc plasma[J].Diamond and Related Materials, 2021, 116: 108417.

[52]NAN Y L, LI B, ZHANG X J, et al.Catalyst-free, tunable doping content of graphitic-N in arc-discharged graphene via gas and solid nitrogen sources and their formation mechanisms[J].Journal of Nanoparticle Research, 2018, 20: 274.

[53]LUAN Y T, HU R, FANG Y Z, et al.Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors[J].Nano-Micro Letters, 2019,11(2): 166-178.

[54]WANG Y H, ZHANG K, WANG R X, et al.Plasma jet printing for preparation of N-doped graphene electrode[J].Journal of Materials Science: Materials in Electronics, 2019, 30(9): 8944-8954.

[55]ZHAO W Q, ZHANG D, CUI M H, et al.Graphene modification based on plasma technologies[J].Acta Physica Sinica, 2021, 70(9): 095208.

[56]LI S B, WANG Z F, JIANG H M, et al.Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors[J].Chemical Communications, 2016, 52(73): 10988-10991.

[57]SIM Y, SURENDRAN S, CHA H, et al.Fluorine-doped graphene oxide prepared by direct plasma treatment for supercapacitor application[J].Chemical Engineering Journal, 2021, 428: 132086.

[58]TAO L, WANG Q, DOU S, et al.Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction[J].Chemical Communications, 2016, 52(13): 2764-2767.

[59]CHU K, WANG F, TIAN Y, et al.Phosphorus doped and defects engineered graphene for improved electrochemical sensing: synergistic effect of dopants and defects[J].Electrochimica Acta, 2017, 231: 557-564.

[60]TIAN Y, WEI Z, WANG X J, et al.Plasma-etched, S-doped graphene for effective hydrogen evolution reaction[J].International Journal of Hydrogen Energy, 2017, 42(7): 4184-4192.

[61]BROWNSON D A C, KAMPOURIS D K, BANKS C E.An overview of graphene in energy production and storage applications[J].Journal of Power Sources, 2011, 196(11): 4873-4885.

[62]KIM H J, JEONG H K.Direct reform of graphite oxide electrodes by using ambient plasma for supercapacitor applications[J].Chemical Physics Letters, 2017, 686: 49-54.

[63]WU S L, ZHANG C, CUI X Y, et al.Facile synthesis of nitrogen-doped and boron-doped reduced graphene oxide using radio-frequency plasma for supercapacitors[J].Journal of Physics D: Applied Physics, 2021, 54(26): 265501.

[64]CHEN Y N, ZHAO H B, SHENG L M, et al.Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2-inert gas mixtures[J].Chemical Physics Letters, 2012, 538: 72-76.

[65]DUAN L F, ZHAO L J, CONG H, et al.Plasma treatment for nitrogen-doped 3D graphene framework by a conductive matrix with sulfur for high-performance Li-S batteries[J].Small, 2019, 15(7): 1804347.

[66]TATAROVA E, BUNDALESKA N, SARRETTE J P, et al.Plasmas for environmental issues: from hydrogen production to 2D materials assembly[J].Plasma Sources Science & Technology, 2014, 23(6): 063002.

[67]ZHANG J T, ZHAO Z H, XIA Z H, et al.A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J].Nature Nanotechnology, 2015, 10(5): 444-452.

[68]LI X, ZHANG B W, YAN X M, et al.Fe, N-doped graphene prepared by NH3 plasma with a high performance for oxygen reduction reaction[J].Catalysis Today, 2019, 337: 97-101.

[69]YI L Y, FENG B M, CHEN N, et al.Electronic interaction boosted electrocatalysis of iridium nanoparticles on nitrogen-doped graphene for efficient overall water splitting in acidic and alkaline media[J].Chemical Engineering Journal, 2021, 415: 129034.