ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第3期
<返回第3期

GO芒硝基相变纳米流体的制备及其流变特性

Preparation and rheological properties of graphene oxide mirabilite phase-change nanofluids

陈凤兰1,铁生年1,汪长安1,2

(1. 青海大学 新能源光伏产业研究中心,青海 西宁 810016;2. 清华大学 材料科学与工程学院,北京 100084)


DIO:10.13732/j.issn.1008-5548.2022.03.010

收稿日期: 2021-12-07, 修回日期:2022-03-11,在线出版时间:2022-04-27。

基金项目:青海省自然科学基金项目,编号:2020-ZJ-909、2021-ZJ-906;材料复合新技术国家重点实验室(武汉理工大学)开放基金项目,编号:2020-KF-1。

第一作者简介:陈凤兰(1997—),女,硕士研究生,研究方向为相变储能材料。E-mail:qhucfl202097@163.com。

通信作者简介:铁生年(1965—),男,教授,博士生导师,研究方向为新材料高值化。E-mail:tieshengnian@163.com。


摘要:以Na2SO4·10H2O-Na2CO3·10H2O-NaCl三元相变体系为基液,采用两步法制备氧化石墨烯(GO)芒硝基相变纳米流体(GSPCNs)。结果表明:纳米GO在温度为35℃以上超声分散于芒硝基相变材料中具有较好的分散稳定性;在35~50℃的温度下,GO-GSPCNs的黏度随时间恒定,无触变性;在35℃下,剪切速率大于30 s-1时,GO-GSPCNs是牛顿型流体,剪切速率小于30 s-1时呈非牛顿剪切变稀行为,服从宾汉姆(Bingham)流体模型,一致性指数高于0.999。在剪切应力为100 Pa时,GO-GSPCNs黏度随着温度升高而降低。经1 200次固-液循环后,不同体积分数的GO-GSPCNs流变行为在低剪切速率时发生变化,循环后的流体黏度降低,流动阻力减小。

关键词:纳米氧化石墨烯;芒硝基相变纳米流体;流变特性;固-液循环

Abstract:On the basis of Na2SO4·10 H2O-Na2CO3·10 H2O-NaCl ternary phase change system, graphene oxide(GO)mirabilite phase change nanofluids(GSPCNs) was prepared by two-step method. The results show that nano graphene oxide has good dispersion stability when ultrasonically dispersed in the mirabilite phase change materials at the temperature above 35 ℃. At 35~50 ℃, the viscosity of GO-GSPCNs is constant over time and has no thixotropy. At 35 ℃, when the shear rate is more than 30 s-1, GO-GSPCNs is the Newtonian fluid, its shear rate is less than 30 s-1, showing non-Newtonian shear thinning behavior obeying the Bingham fluid model, and disposable index is higher than 0.999. When the shear stress is 100 Pa, the viscosity of GO-GSPCNs decreases with increasing of temperature. After 1 200 solid-liquid cycles of GO-GSPCNs with different volume fraction, the rheological behavior changes at low shear rate. The viscosity of GO-GSPCNs decrease after circulation and the flow resistance of GO-GSPCNs decreases.

Keywords:nano graphene oxide; mirabilite phase change nanofluid; rheological property; solid-liquid circulation


参考文献(References):

[1]李建立,薛平.纳米技术在相变储热领域的应用[J].中国科技论文在线,2008,3(4): 299-305.

[2]舒钊,钟珂,肖鑫,等.多孔纳米基复合相变材料在建筑节能中的应用进展[J].化工进展,2021,40(2): 265-274.

[3]魏葳.纳米流体的辐射特性及其在太阳能热利用中的应用研究[D].杭州:浙江大学,2013.

[4]朱冬生,李新芳,汪南,等.纳米流体相变蓄冷材料的基本特性与应用前景[J].材料导报,2007,21(4): 87-91.

[5]宣益民,李强.纳米流体能量传递理论与应用[M].北京:科学出版社, 2010.

[6]WAHAB A, HASSAN A, QASIM M A, et al.Solar energy systems:potential of nanofluids[J].Journal of Molecular Liquids, 2019, 289: 111049.

[7]GOUD V M, VAISAKH V, JOSEPH M, et al.An experimental investigation on the evaporation of polystyrene encapsulated phase change composite material based nanofluids[J].Applied Thermal Engineering, 2019, 168: 114862.

[8]MUTHOKA M J, ZHANG X L, XU X F.Study on thermophysical properties of nanofluid based composite phase change material for low temperature application[J].Energy Procedia, 2017, 142: 3313-3319.

[9]ZHENG Y Z.Experimental evaluating the rheological behavior of ethylene glycol under graphene nanosheets loading[J].Powder Technology, 2020, 367: 788-795.

[10]李晓明,高逸丹,孔庆强,等.高结构稳定性、低泄漏率三维铜@石墨烯复合相变材料的制备[J].物理化学学报,2022,38(1): 149-160.

[11]REN H, GU C, JOO S W, et al.Preparation of SnO2 nanorods on reduced graphene oxide and sensing properties of as grown nanocomposites towards hydrogen at low working temperature[J].Materials Express, 2018, 8(3): 263-271.

[12]刘玉民,刘玉东,胡光华,等.氧化石墨烯纳米流体分散性及过冷特性研究[J].化工新型材料, 2014, 42(10): 189-191.

[13]VALLEJO J P, PEREZ T J, CABALEIRO D, et al.Potential heat transfer enhancement of functionalized graphene nanoplatelet dispersions in a propylene glycol-water mixture[J].The Journal of Chemical Thermodynamics, 2018, 123: 174-184.

[14]HAMZE S, CABALEIRO D, MARE T, et al.Shear flow behavior and dynamic viscosity of few-layer graphene nanofluids based on propylene glycol-water mixture[J].Journal of Molecular Liquids, 2020: 113875.

[15]WEI Y, XIE H, WEI C.Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets[J].Journal of Applied Physics, 2010, 107(9): 094317.

[16]周露.丙二醇基石墨烯纳米流体的制备与热性能研究[D].重庆:西南石油大学,2017.

[17]喻彩梅,章学来,华维三.十水硫酸钠相变储能材料研究进展[J].储能科学与技术,2021,10(3): 1016-1024.

[18]蒋自鹏,铁生年.二维石墨烯片增强芒硝基复合相变材料导热性研究[J].人工晶体学报,2016,45(7): 1820-1825, 1831.

[19]LI M, MU B.Effect of different dimensional carbon materials on the properties and application of phase change materials: a review[J].Applied Energy, 2019, 242(345): 695-715.

[20]DING J H, ZHAO H J, YU H B.Graphene nanofluids based on one-step exfoliation and edge-functionalization[J].Carbon, 2021, 171: 29-35.

[21]CHEN X, CHENG P, TANG Z, et al.Carbon based composite phase change materials for thermal energy storage, transfer, and conversion[J].Advanced Science, 2021, 8(9): 2001274.

[22]GUO Y, BAI, DONG, et al.Probing the critical nucleus size for ice formation with graphene oxide nanosheets[J].Nature, 2019, 576(77): 437-441.

[23]DONG X, MAO J, GENG S, et al.Study on performance optimization of sodium sulfate decahydrate phase change energy storage materials[J].Journal of Thermal Analysis and Calorimetry, 2021, 143: 1-12.