ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第3期
<返回第3期

以ZIF-8为模板的Cu-Zn@C制备与吸附性能

Preparation and adsorption properties of Cu-Zn@C with ZIF-8 template

朱玉琦1,陈凯伟1,张佳莉1,陈九玉2,杨 毅1

(1. 南京理工大学 环境与生物工程学院,江苏 南京 210094; 2. 常州大学 石油工程学院,江苏 常州 213164)


DOI:10.13732/j.issn.1008-5548.2022.03.016

收稿日期: 2021-11-17, 修回日期:2021-12-15,在线出版时间:2022-05-05。

基金项目:国家自然科学基金项目,编号:11805101、51908240;江苏省自然科学基金项目,编号:BK20181064;中央高校基本科研业务费专项资金项目,编号:30921013110;江苏省凹土重点实验室开放课题项目,编号:HPK202001;江苏省大气环境监测与污染控制高技术研究重点实验室开放课题项目,编号:KHK2004。

第一作者简介:朱玉琦(2001—),男,研究方向为环境功能材料。E-mail:1023185283@qq.com。

通信作者简介:杨毅(1973—),男,研究员,博士,博士生导师,研究方向为环境功能材料。E-mail:yangyi@njust.edu.cn。


摘要:为了提高材料对水体中放射性碘离子的吸附性能,以双金属Cu-Zn ZIFs为前驱体,煅烧制备金属铜掺杂多孔碳(Cu-Zn@C)复合材料,利用SEM、 XRD等方法对材料进行表征。结果表明:Cu的引入不会破坏ZIF-8的结构,经高温碳化后,材料的形貌无明显变化;Cu的引入有利于提高多孔碳材料对碘离子的吸附性能;酸性条件有利于Cu-Zn@C对碘离子的吸附,在pH=3时,吸附容量达到230 mg/g;在大量干扰离子存在时Cu-Zn@C仍能对碘离子具有较高的吸附容量。

关键词:类沸石咪唑骨架;多孔碳;碘离子;吸附

Abstract:In order to improve the adsorption performance of the materials on radioactive iodide ions in water, metal-copper doped porous carbon(Cu-Zn@C) composites were prepared by calcination using bimetallic Cu-Zn ZIFs as precursors, and characterized by SEM and XRD methods. The results show that the introduction of Cu does not damage the structure of ZIF-8 and the morphology of the material does not change significantly after high temperature carbonization. The introduction of Cu is beneficial to improve the adsorption performance of the porous carbon material for iodine ions.Acidic conditions are favorable to the adsorption of iodine ions by Cu-Zn@C, with an adsorption capacity of 230 mg/g at pH=3.In addition, the adsorption capacity of iodine ions is still high in the presence of a large number of interfering ions.

Keywords:zeolite imidazole skeleton; porous carbon; iodide anion; adsorption


参考文献(References):

[1]EVRON J M, ESFANDIARI N H, PAPALEONTIOU M.Cancer incidence and mortality following treatment of hyperthyroidism with radioactive iodine[J].Current Opinion in Endocrinology, Diabetes and Obesity, 2020, 27:323-328.

[2]CHEN J, GU A, MIENSAH E D, et al.Cu-Zn bimetal ZIFs derived nanowhisker zero-valent copper decorated ZnO nanocomposites induced oxygen activation for high-efficiency iodide elimination[J].Journal of Hazardous Materials, 2021, 416(10): 126097.

[3]HASAN Z, JHUNG S H.Removal of hazardous organics from water using metal-organic frameworks(MOFs): plausible mechanisms for selective adsorptions[J].Journal of Hazardous Materials, 2015, 283: 329-339.

[4]YANG X B, QIU L Q, LUO X T.ZIF-8 derived Ag-doped ZnO photocatalyst with enhanced photocatalytic activity[J].RSC Advances, 2018, 8: 4890-4894.

[5]覃建娴, 余芳, 陈元涛, 等.CoZn-ZIF/MgAl-LDHs制备及其对碘吸附性能的研究[J].环境科学学报, 2019, 39(2): 410-416.

[6]王孝娃, 汪勇, 涂彧.金属-有机骨架材料用于放射性核素吸附[J].科学通报, 2014, 59(34): 3353-3361.

[7]毛晓妍, 王玉新, 汪翰阳, 等.沸石咪唑酯骨架(ZIFs)的制备及性能研究进展[J].当代化工, 2018, 47(8): 1698-1701.

[8]CHEN J, GAO Q, ZHANG X, et al.Nanometer mixed-valence silver oxide enhancing adsorption of ZIF-8 for removal of iodide in solution[J].Science of the Total Environment, 2018, 646(PT.1-1660):634-644.

[9]WEN G, WANG S J, MA J, et al.Oxidative degradation of organic pollutants in aqueous solution using zero valent copper under aerobic atmosphere condition[J].Journal of Hazardous Materials, 2014, 275(2): 193-199.

[10]王春宇, 张晶, 张青云, 等.ZIF-8基多孔碳的制备及吸附性能[J].化工进展, 2017, 36(1): 299-304.

[11]ZHAO D Y, HUO Q S, FENG J L, et al.Nonionic triblock and sturdy block copolymer and oligomeric surfactant syntheses of highly ordered,hydrothermally stable,mesoporous silica structures[J].Journal of the American Chemical Society,1998,120(24):6024-6036.

[12]DIN I U, SHAHARUN M S, NAEEM A, et al.Revalorization of CO2 for methanol production via ZnO promoted carbon nanofibers based Cu-ZrO2 catalytic hydrogenation[J].Journal of Energy Chemistry, 2019, 39: 68-76.

[13]MALIK A S, ZAMAN S F, AL-ZAHRANI A A, et al.Selective hydrogenation of CO2 to CH3OH and in-depth DRIFT analysis for PdZn/ZrO2 and CaPdZn/ZrO2 catalysts[J].Catalysis Today, 2020, 357: 573-582.

[14]SPRYNSKYY M, BUSZEWSKI B, TERZYK A P, et al.Study of the selection mechanism of heavy metal(Pb2+, Cu2+, Ni2+, and Cd2+)adsorption on clinoptilolite[J].Journal of Colloid & Interface Science, 2006, 304(1): 21-28.

[15]GUPTW V K, JAIN R, MALATHI S, et al.Adsorption-desorption studies of indigocarmine from industrial effluents by using de-oiled mustard and its comparison with charcoal[J].Journal of Colloid & Interface Science, 2010, 348(2): 628-633.

[16]HAN R, ZOU W, WANG Y, et al.Removal of uranium(VI)from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect[J].Journal of Environmental Radioactivity, 2007, 93(3): 127-143.

[17]POOTS V, MCKAY G, HEALY J J.Removal of basic dye from effluent using wood as an adsorbent[J].Water Pollution Control Federation, 1978, 50(5): 926-935.

[18]JC A, AG A, EDM A, et al.Core-shell ZnO@Cu2O encapsulated Ag NPs nanocomposites for photo oxidation-adsorption of iodide anions under visible light[J].Separation and Purification Technology, 2021.

[19]PENG Z, JING Z, ZHANG Y, et al.Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper[J].Journal of Hazardous Materials, 2017, 344: 1209-1219.

[20]KHATAEE A,GHOLAMI P,SHEYDAEI M,et al.Preparation of nanostructured pyrite with N2 glow discharge plasma and the study of its catalytic performance in the heterogeneous Fenton process[J].New Journal of Chemistry, 2016, 40(6): 5221-5230.