ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第3期
<返回第3期

振动慢剪破碎机内锥动力学分析

Dynamic analysis of inner cone of vibration slow shear crusher

蔡改贫a,b,郝书灏a,黄金若a,胡 振a

(江西理工大学 a. 机电工程学院;b. 江西省矿冶机电工程技术研究中心,江西 赣州 341000)


DOI:10.13732/j.issn.1008-5548.2022.03.002

收稿日期: 2021-11-10, 修回日期:2021-11-24,在线出版时间:2022-04-15。

基金项目:国家自然科学基金项目,编号:51464017;江西省重点研发计划项目,编号:20181ACE50034。

第一作者简介:蔡改贫(1964—),男,教授,博士,博士生导师,研究方向为矿冶智能装备、矿冶系统仿真。E-mail: 1123615286@qq.com。


摘要:为研究振动慢剪破碎机内锥运动轨迹,通过拉格朗日方程建立六自由度的内锥动力学模型,使用MATLAB软件进行内锥动力学响应的求解,利用ADAMS仿真软件进行空载下的内锥动力学响应仿真分析,进行EDEM与ADAMS耦合分析负载时的内锥动力学响应。结果表明:振动慢剪破碎机内锥的运动主要为水平面上的振动圆运动;空载情况下X、Y方向上的位移范围为-0.4~0.4 mm,整体振幅为0.8 mm;负载情况下X、Y方向上的位移范围为-0.3~0.3 mm,整体振幅为0.6 mm,负载时的振幅小于空载下的。

关键词:振动慢剪;破碎机;多自由度;振动圆运动;动力学分析

Abstract:In order to study the trajectory of the inner cone of the vibrating slow shear crusher, a six-degree-of-freedom inner cone dynamic model was established through Lagrangian equations and MATLAB was used to solve the inner cone dynamic response. The ADAMS simulation software was used to perform the inner cone under no-load cone dynamic response simulation analysis, coupling of EDEM and ADAMS was used to analyze the inner cone dynamic response under load. The results show that the movement of inner cone of the vibrating slow shear crusher is mainly the circular vibration on the horizontal plane. The displacement range in X and Y directions under no-load conditions is from-0.4 mm to 0.4 mm, and the overall amplitude is 0.8 mm. The displacement range in X and Y directions under load is from-0.3 mm to 0.3 mm, and the overall amplitude is 0.6 mm. The amplitude under load is smaller than that under no load.

Keywords:vibrating slow shear; crusher; multiple freedom degrees; vibrating circular motion; dynamic analysis


参考文献(References):

[1]郎宝贤.圆锥破碎机[M].北京:机械工业出版社, 1998: 110-240.

[2]GERASIMOV M D, CHETVERIKOV B S, LUBIMYI N S, et al.Method of forming technological parameters in the design of vibrating cone crushers[J].IOP Conference Series: Materials Science and Engineering, 2020, 945(1): 012010-012063.

[3]CHENG J Y, REN T Z, ZHANG Z L, et al.A dynamic model of inertia cone crusher using the discrete element method and multi-body dynamics coupling[J].Minerals, 2020, 10(10): 862-884.

[4]张子龙.圆锥破碎机层压破碎腔形优化及工艺参数研究[D].秦皇岛: 燕山大学, 2019.

[5]LI D S, WANG Y H, WANG C, et al.Research on the wear behavior of the fixed cone liner of a cone crusher based on the discrete element method[J].ACS Omega, 2020, 5(19): 11186-11195.

[6]段国晨.六自由度破碎机破碎行为及性能优化研究[D].北京: 北京科技大学, 2021.

[7]刘瑞月.圆锥破碎机工作机理及性能优化研究[D].北京: 北京科技大学, 2020.

[8]CHENG J Y, REN T Z, ZHANG Z L, et al.Influence of two mass variables on inertia cone crusher performance and optimization of dynamic balance[J].Minerals, 2021, 11(2): 163-180.

[9]姜志宏, 刘民民, 姜晓锋, 等.六自由度振动慢剪破碎机动力学特性[J].机械设计与研究, 2021, 37(2): 54-59.

[10]李臣, 姜志宏, 郭晋, 等.非规则外形内聚颗粒模型的构建及其破碎能分析[J].中国粉体技术, 2017, 23(3): 45-50.

[11]李臣.振动慢剪破碎机破碎性能分析及实验研究[D].赣州: 江西理工大学, 2018.

[12]张策.机械动力学[M].2版.北京: 高等教育出版社, 2008: 61-197.

[13]饶李欣业, 张明路.机械振动: mechanical vibrations[M].北京: 清华大学出版社, 2009.

[14]赵月静, 秦志英, 彭伟.刚散耦合振动圆锥破碎机动力学分析[J].振动.测试与诊断, 2012(增刊1): 92-97.

[15]赵月静, 秦志英, 彭伟.考虑物料层作用的振动圆锥破碎机动力学分析[J].振动与冲击, 2011, 30(9): 232-236.

[16]蔡改贫, 郭晋, 李臣, 等.异形多级颗粒模型的数值模拟试验与破碎实验[J].中国粉体技术, 2019, 25(3): 65-71.

[17]BARRIOS G K P, N JIMÉNEZ-HERRERA N, TAVARES L M.Simulation of particle bed breakage by slow compression and impact using a DEM particle replacement model[J].Advanced Powder Technology, 2020, 31(7): 2749-2758.

[18]JIMÉNEZ-HERRERA N, BARRIOS G K P, TAVARES L M.Comparison of breakage models in DEM in simulating impact on particle beds[J].Advanced Powder Technology, 2018, 29(3): 692-706.