ISSN 1008-5548

CN 37-1316/TU

2022年28卷  第3期
<返回第3期

千瓦级煤粉的预热燃烧负荷变化

Load variation of kilowatt-level preheating combustion for pulverized coal

王婷婷1,2,朱建国1,2,师永帅1,2,张 震1,3

(1.中国科学院 工程热物理研究所,北京 100190;2.中国科学院大学 工程科学学院,北京 100049;3.华北电力大学 能源动力与机械工程学院,北京 102206)


DOI:10.13732/j.issn.1008-5548.2022.03.001

收稿日期: 2022-01-19, 修回日期:2022-03-07,在线出版时间:2022-04-08。

基金项目:中国科学院战略先导科技专项项目,编号:XDA21040100。

第一作者简介:王婷婷(1996—),女,硕士研究生,研究方向为预热燃烧技术。E-mail:wangtingting@iet.cn。

通信作者简介:朱建国(1977—),男,研究员,硕士生导师,研究方向为预热燃烧技术。E-mail:zhujianguo@iet.cn。


摘要:依托千瓦级煤粉预热燃烧综合评价实验平台,研究低负荷预热燃烧特性和负荷变化的动态响应特性。结果表明:实验平台在负荷为设计功率的30%状况下运行时,预热温度达到900℃,且预热燃烧系统运行稳定,烟气中的CO排放质量浓度为25 mg/m3, NOx排放质量浓度为150 mg/m3。负荷由设计功率的30%升至42%时,预热温度变化速率为3.2℃/min,预热室升负荷速率为2.4%/min,卧式燃烧室温度变化速率为4.1℃/min,卧式燃烧室升负荷速率为1.3%/min;负荷升高过程中,预热煤气的CO2体积分数先减小后增大,CO和H2体积分数先减小后增大,CH4体积分数基本不变;尾部烟气的CO质量浓度先增大后减小,NOx质量浓度先减小后增大。

关键词:煤粉;变负荷;燃烧特性;动态变化

Abstract:Based on the comprehensive evaluation experimental platform of kilowatt-level pulverized coal preheating combustion, this paper conducted experimental research on low-load preheating combustion characteristics and dynamic response characteristics of load changes. The results show that when the experimental platform runs under the load of 30%, the preheating temperature reaches 900 ℃, and the preheating combustion system works stably, the CO emission in the flue gas is 25 mg/m3, and the NOx emission is 150 mg/m3. When the load increased from 30% to 42%, the preheating temperature change rate is 3.2 ℃/min, the load increasing rate of the preheating chamber is 2.4%/min, the temperature change rate of the horizontal combustion chamber is 4.1 ℃/min, and the load increasing rate of the horizontal combustion chamber is 1.3%/min. During the load increasing process, the CO2 content volume fraction of the preheating gas first decreases and then increases, the CO and H2 content volume fraction first decreases and then increases, and the CH4 content volume fraction remains basically unchanged. The mass concentration of CO content in the tail flue gas increases first and then decreases, and the mass concentration of NOx first decreases and then increases.

Keywords:coal powder; variable load; combustion characteristics; dynamic changes


参考文献(References):

[1]李洪言,赵朔,林傲丹,等.2019年全球能源供需分析:基于《BP世界能源统计年鉴(2020)》[J].天然气与石油,2020,38(6):122-130.

[2]张明,胡耘,朱法华,等.中国与世界主要经济体能源消费特征比较研究[J].中国国土资源经济,2021,34(1):47-54.

[3]姜大霖, 程浩.中长期中国煤炭消费预测和展望[J].煤炭经济研究, 2020, 40(7): 16-21.

[4]蔡晋,单露,王志宁,等.超临界350 MW循环流化床锅炉变负荷特性[J].热力发电,2020,49(9):98-103,108.

[5]刘文胜,吕洪坤,蔡洁聪,等.600 MW亚临界锅炉30%额定负荷深度调峰试验研究[J].锅炉技术,2019,50(4):59-65.

[6]陈磊.机组低负荷期间如何降低炉膛出口氮氧化物含量[J].价值工程,2014,33(1):41-42.

[7]黄军.四角切圆燃烧超低NOx锅炉变负荷特性研究[J].锅炉技术,2018,49(1):47-52.

[8]ZHANG X, CHEN Z, ZHANG M, et al.Combustion stability, burnout and NO emissions of the 300 MW down-fired boiler with bituminous coal: load variation and low-load comparison with anthracite[J].Fuel, 2021, 295(11):120641.

[9]WANG Q X, CHEN Z C, LI L, et al.Achievement in ultra-low-load combustion stability for an anthracite-and down-fired boiler after applying novel swirl burners: from laboratory experiments to industrial applications[J].Energy, 2020, 192:116623.

[10]ZHANG H F, GANG M M, HONG F, et al.Control-oriented modelling and investigation on quick load change control of subcritical circulating fluidized bed unit[J].Applied Thermal Engineering, 2019, 163:114420.

[11]ZHANG Y, ZHU J, LYU Q, et al.Experiment study on combustion characteristics of pulverized coal based on partial gasification of circulating fluidized bed[J].Energy & Fuels, 2020,34(1):989-995.

[12]YAO Y, ZHU J, LU Q, et al.Experimental study on preheated combustion of pulverized semi-coke[J].Journal of Thermal Science, 2015, 24(4): 370-377.

[13]YAO Y, ZHU J G, LU Q G.Experimental study on nitrogen transformation in combustion of pulverized semi-coke preheated in a circulating fluidized bed[J].Energy & Fuels, 2015, 29(6): 3985-3991.

[14]LIU J Z, LIU Y H, ZHU J G.A novel developed weighted exponential sum model for char cloud conversion behavior under air-and oxy-combustion: experiments and kinetics modeling analysis[J].Combustion and Flame, 2021, 231: 111489.

[15]ZHU S J, LYU Q G, ZHU J G, et al.NO emissions under pulverized char MILD combustion in O2/CO2 preheated by a circulating fluidized bed: effect of oxygen-staging gas distribution[J].Fuel Processing Technology, 2018, 182: 104-112.

[16]JOANNON M D, CAVALIERE A, DONNARUMMA R, et al.Dependence of autoignition delay on oxygen concentration in mild combustion of high molecular weight paraffin[J].Proceedings of the Combustion Institute, 2002, 29(1): 1139-1146.

[17]KAWAI K, YOSHIKAWA K, KOBAYASHI H, et al.High temperature air combustion boiler for low BTU gas[J].Energy Conversion & Management, 2002, 43(9): 1563-1570.

[18]ZHU J, OUYANG Z, LU Q.Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed[J].Journal of Thermal Science, 2013, 22(3): 261-268.

[19]KIGA T, YOSHIKAWA K, SAKAI M, et al.Characteristics of pulverized coal combustion in high-temperature preheated air[J].Journal of Propulsion & Power, 2012, 16(4): 601-605.

[20]TAMURA M, WATANABE S, KOMABA K, et al.Combustion behaviour of pulverised coal in high temperature air condition for utility boilers[J].Applied Thermal Engineering, 2015, 75: 445-450.

[21]SAHA M, DALLY B B, MEDWELL P R, et al.Burning characteristics of Victorian brown coal under MILD combustion conditions[J].Combustion and Flame, 2016, 172:252-270.

[22]WANG J, ZHU J G, LYU Q G.Experimental study on combustion characteristics and NOx emissions of pulverized anthracite preheated by circulating fluidized bed[J].Journal of Thermal Science, 2011, 20(4): 355-361.

[23]OUYANG Z, ZHU J G, LU Q G.Experimental study on preheating and combustion characteristics of pulverized anthracite coal[J].Fuel, 2013, 113:122-127.