ISSN 1008-5548

CN 37-1316/TU

2023年29卷  第1期
<返回第1期

在线检测中不同形状煤粉颗粒的流动特性

Flow characteristics of pulverized coal particles with different shapes in online detection

姬厚展, 高正阳, 李永华, 宋杨凡

(华北电力大学 动力工程系, 河北 保定 071003)


DOI:10.13732/j.issn.1008-5548.2023.01.001

收稿日期: 2022-06-02,修回日期:2022-10-28,在线出版时间:2022-11-19 17:49。

基金项目:北京市自然科学基金青年项目,编号:3214056。

第一作者简介:姬厚展(1997—),男,硕士研究生,研究方向为高效清洁燃烧与环境污染控制。E-mail:jihouzhan@163.com。

通信作者简介:李永华(1968—),男,教授,硕士生导师,研究方向为锅炉节能与优化。E-mail:liyonghua@126.com。


摘要:基于图像识别技术在煤粉二值化图像中进行煤粉颗粒基本特征的提取;建立煤粉颗粒和在线检测装置的三维几何模型;设定气固两相的模拟参数及边界条件后,采用CFD-DEM耦合方法模拟煤粉的气固两相流动,进行气相速度场的分析以及颗粒相的流动分析,研究颗粒的扩散机理,获得颗粒相的速度场和体积分数的分布,归纳出颗粒的流动特性。结果表明:气相在主流通道内流动比较均匀,沿管径增大方向流速逐渐减小;在检测通道内有比较明显的旋涡生成,湍流卷吸效应影响了煤粉颗粒影像的清晰度;形状规则的球形颗粒更易偏离主流流动方向,形成颗粒沉积;形状不规则的颗粒受气力输运作用影响较大,大部分在煤粉气流主流通道内流动;在颗粒受湍流卷吸效应偏离主流流动通道后,粒径较小的颗粒更易运动至检测通道两侧检测元件附近从而影响检测效果。

关键词:在线检测;煤粉颗粒;流动特性;图像识别;速度场

Abstract:Based on image recognition technology, the basic characteristics of pulverized coal particles were extracted from binary images. Three-dimensional geometric model of pulverized coal particle and online detection device were established. CFD-DEM coupling method was used to simulate the gas-solid two-phase flow of pulverized coal after setting the simulation parameters and boundary conditions of gas-solid two-phase. Through the analysis of gas velocity field and particle phase flow, the diffusion mechanism of particles were studied. The velocity field and volume fraction distribution of particle phase were obtained and the flow characteristics of particles were summarized. The results show that the gas flow in the mainstream channel is relatively uniform, and the flow velocity gradually decreases along the direction of diameter increase. There is obvious vortex generation in the observation channel, and the turbulent entrainment effect affects the clarity of the pulverized coal particle image. Spherical particles with regular shape are more likely to deviate from the main flow direction, forming unnecessary particle deposition. Irregularly shaped particles are greatly affected by the pneumatic transport, and most of them flow in the main flow channel of the pulverized coal flow. After the particles are deviated from the mainstream flow channel by the turbulent entrainment effect, the smaller particles are more likely to move to the vicinity of the detection elements on both sides of the observation channel so as to affect the detection effect.

Keywords:online detection; pulverized coal particles; flow characteristics; image recognition; velocity field


参考文献(References):

[1]葛凌峰. 燃煤电站煤粉粒径监测研究进展[J]. 能源与节能, 2021, 195(12): 189-190.

[2]赵霖, 高正阳. 基于OpenCV图像识别对一次风煤粉细度与形状的测量[J]. 能源与节能, 2018, 159(12): 156-157.

[3]XU Y.Research on coal and rock image recognition based on 2DPCA algorithm[J]. IOP Conference Series:Earth and Environmental Science, 2020, 514(2): 22004-22009.

[4]PAN J.Research on the image auto-recognition algorithm for the fusibility of coal ash[J]. Foreign Electronic Measurement Technology, 2008, 27(10): 1-3.

[5]TSUJI Y, TANAKA T, ISHIDA T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology, 1992, 71(3): 239-250.

[6]JIN Y, LU H F, GUO X L, et al .Multiscale analysis of flow patterns in the dense-phase pneumatic conveying of pulverized coal[J]. AIChE Journal, 2019, 65(9): 16674.

[7]LU H F, GUO X L, JIN Y, et al. Effect of moisture on flowability of pulverized coal[J]. Chemical Engineering Research and Design, 2018, 133: 326-334.

[8]JIN Y, LU H F, GUO X L, et al. The effect of water addition on the surface energy, bulk and flow properties of lignite[J]. Fuel Processing Technology, 2018, 176: 91-100.

[9]张春燕, 马超, 晏飞. 基于CFD-DEM方法的不同弯径比弯管中气固两相流动特性[J]. 江苏科技大学学报(自然科学版), 2018, 32(6): 803-808.

[10]李颖. 基于深度学习的煤粉颗粒分割方法研究[D]. 徐州: 中国矿业大学, 2021.

[11]陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26(9): 1389-1392.

[12]陈云波, 徐培涛. 水泥颗粒形貌的表征及其研究方法[J]. 水泥, 2003(2): 17-19.

[13]刘清秉, 项伟, BUDHU M, 等. 砂土颗粒形状量化及其对力学指标的影响分析[J]. 岩土力学, 2011, 32(增刊1): 190-197.

[14]ZHONG W Q, YU A B, LIU X J, et al. DEM/CFD-DEM modelling of non-spherical particulate systems:theoretical developments and applications[J]. Powder Technology, 2016, 302: 108-152.

[15]KOBAYASHI T, TANAKA T, SHIMADA N. DEM-CFD analysis of fluidization behavior of Geldart Group A particles using a dynamic adhesion force model[J]. Powder Technology, 2013, 248: 143-152.

[16]BEETSTRA R, HOEF M, KUIPERS J. Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres[J]. AIChE Journal, 2007, 53(2): 489-501.

[17]王松岭. 高等工程流体力学[M]. 北京: 中国电力出版社, 2011: 74-80.

[18]王婧, 王军武. 气固两相流中颗粒速度分布函数统计分析[J]. 中国粉体技术, 2018, 24(5): 1-5.

[19]郭佳才. 电旋风除尘器的气固两相特性研究与数值模拟[D]. 上海: 上海工程技术大学, 2020.

[20]王国强, 郝万军, 王继新. 离散单元法及其在EDEM上的实践[M]. 西安: 西北工业大学出版社, 2010: 17-18.