代表期刊论文 :
Zhang, T., Zeng, D., Liu, W., Wu, Z., Ding, C. and Zhong, X., 2025. Contrastive independent subspace analysis network for multi-view spatial information extraction. Neural Networks, p.107105.
Shi, Z., Chen, L., Ding, W., Zhong, X., Wu, Z., Chen, G. Y., ... & Chen, C. P. (2024). IFKMHC: Implicit Fuzzy K-Means Model for High-Dimensional Data Clustering. IEEE Transactions on Cybernetics.
Zeng, D., Ding, C., Wu, Z., Zhong, X., & Liu, W. (2024). Segmentary group-sparsity self-representation learning and spectral clustering via double L21 norm. Knowledge-Based Systems, 286, 111392.
Zhou, R., Feng, Y., Wang, G., Zhong, X., Wu, Z., Wu, Q. and Zhang, X., 2025. TSUBF-Net: Trans-spatial UNet-like network with Bi-direction fusion for segmentation of adenoid hypertrophy in CT. Neural Computing and Applications, pp.1-17.
Liu, C., Zhang, Q., Liang, F., Huang, J., Ye, H., Wu, Z., & Zhong, X. (2024). Effective camera calibration by using phase-shifting fringe patterns. Optics & Laser Technology, 169, 110084.
Zhong, X., Zhu, W., Liu, W. et al. G-SAM: A Robust One-Shot Keypoint Detection Framework for PnP Based Robot Pose Estimation. J Intell Robot Syst 109, 28 (2023). https://doi.org/10.1007/s10846-023-01957-5
Deng, Y., Pan, X., Zhong, X. and Huang, G., 2020. Improved imaging of extremely-slight transparent aesthetic defects using a saturation level-guided method. Optics Express, 28(3), pp.3699-3716.
Zhong, X., Guo, J. and Deng, Y., 2019. Pixel-Classification-Based Reticulocyte Detection in Blood-Smear Microscopy Images. Journal of Medical Devices, 13(4).
Zhong, X.P., CHEN, H.J., Li, M.Q. and Zeng, W.W., 2021. Understanding Engineering Drawing Images From Mobile Devices. Journal of Information Science & Engineering, 37(1).
代表会议论文:
Yang, Y., Chen, J., Zhong, X. and Deng, Y., 2022, June. Polygon-to-polygon distance loss for rotated object detection. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 3, pp. 3072-3080).
Pang, X., Li, F., Ding, N. and Zhong, X., 2022. Upright-net: Learning upright orientation for 3d point cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 14911-14919).