2005.09-2010.07,博士,中国科学院长春应用化学研究所高分子物理与化学国家重点实验室 2011.01-2013.02,博士后,美国罗彻斯特大学 2013.02-至今,陕西师范大学,教授(博导) Tel: +86-(0)29-85318778 E-mail: qiangwang@snnu.edu.cn |
|
有机电致发光主体材料
有机热激活延迟荧光材料
非富勒烯有机太阳能电池受体材料
国家自然科学基金面上项目,2023-2026。
陕西省自然科学基础研究计划项目,2020-2021。
陕西省自然科学基础研究计划项目,2017-2018。
国家自然科学基金青年基金项目,2014-2016。
陕西省自然科学基础研究计划项目,2014-2016。
教育部高等学校博士学科点专项科研基金课题,2014-2016。
Multifunctional indaceno[1,2-b:5,6-b′]dithiophene chloride molecule for stable high-efficiency perovskite solar cells, Sci. China Chem., 2023, 66, 185-194.
Symmetrical acceptor–donor–acceptor molecule as a versatile defect passivation agent toward efficient FA0.85MA0.15PbI3 perovskite solar cells, Adv. Funct. Mater. 2022, 32, 2112032.
Solution-processable orange-red thermally activated delayed fluorescence emitters with 3,6-disubstituted carbazole for highly efficient OLEDs with low efficiency roll-off, J. Mater. Chem. C, 2022, 10, 2034-2041.
Multifunctional luminophores with dual emitting cores: TADF emitters with AIE properties for efficient solution- and evaporation-processed doped and non-doped OLEDs, Chem. Eng. J., 2022, 431, 133249.
Influence of the terminal group on optoelectronic properties of fused-ring nonfullerene acceptors with ethylhexyl side chain, Dyes Pigments, 2021, 194, 109635.
Small-molecule acceptors with long alkyl chains for high-performance as-cast nonfullerene organic solar cells, Org. Electron., 2021, 93, 106167.
1,8-Naphthalimide-based hybrids for efficient red thermally activated delayed fluorescence organic light-emitting diodes, Org. Electron., 2021, 88, 106012.
Diphenylamine/triazine hybrids as bipolar hosts for phosphorescent organic light-emitting diodes, J. Mater. Chem. C, 2020, 8, 4461-4468.
Phthalonitrile-based bipolar host for efficient green to red phosphorescent and TADF OLEDs, Dyes Pigments, 2020, 173, 107895.
Highly efficient electroluminescence from evaporation- and solution-processable orange-red thermally activated delayed fluorescence emitters, J. Mater. Chem. C, 2019, 7, 12321-12327.
A universal host material with simple structure for monochrome and white phosphorescent/TADF OLEDs, J. Mater. Chem. C, 2019, 7, 558-566.
Effect of linking pattern of dibenzothiophene-S,S-dioxide-containing conjugated microporous polymers on the photocatalytic performance, Macromolecules, 2018, 51, 9502-9508.
Non-fullerene small molecule electron acceptors for high-performance organic solar cells, J. Energy Chem., 2018, 27, 990-1016.
Realizing efficient red thermally activated delayed fluorescence organic light-emitting diodes using phenoxazine/phenothiazine-phenanthrene hybrids, Org. Electron., 2018, 59, 32-38.
Versatile donor–π–acceptor-type aggregation-enhanced emission active fluorophores as both highly efficient nondoped emitter and excellent host, ACS Appl. Mater. Interfaces, 2017, 9, 32946-32956.
Influence of the linkage mode and D/A ratio of carbazole/oxadiazole based host materials on phosphorescent organic light-emitting diodes, J. Lumin., 2017, 188, 612-619.
Hybrid host materials for highly efficient electrophosphorescence and thermally activated delayed fluorescence independent of the linkage mode, Phys. Chem. Chem. Phys., 2017, 19, 5177-5184.
Improving lifetime of phosphorescent organic light-emitting diodes by using a non-conjugated hybrid host, Org. Electron., 2016, 32, 21-26.
New benzimidazole-based bipolar hosts: highly efficient phosphorescent and thermally activated delayed fluorescent OLEDs employing the same device structure, ACS Appl. Mater. Interfaces, 2016, 8, 2635-2643.
Organic semiconductor heterojunctions: electrode independent charge injectors for high-performance organic light-emitting diodes, Light: Sci. Appl., 2016, 5, e16042.
Highly efficient homojunction organic light-emitting diodes, J. Mater. Chem. C, 2015, 3, 6862-6867.
Charge carrier mobility through vacuum–sublimed glassy films of s-triazine- and carbazole-based bipolar hybrid and unipolar compounds, Org. Electron., 2013, 14, 2925-2931.
Evaluation of propylene-, meta-, and para-linked triazine and tert-butyltriphenylamine as bipolar hosts for phosphorescent organic light-emitting diodes, J. Mater. Chem. C, 2013, 1, 2224-2232.
White top-emitting organic light-emitting diodes employing tandem structure, Appl. Phys. Lett., 2012, 101, 133302.
High-performance, phosphorescent, top-emitting organic light-emitting diodes with p–i–n homojunctions, Adv. Funct. Mater., 2011, 21, 1681-1686.
Realization of blue, green, and white inverted microcavity top-emitting organic light-emitting devices based on the same emitting layer, Opt. Lett., 2010, 35, 462-464.