师资结构

您的位置: 首页 >> 师资队伍 >> 师资结构 >> 无机非金属材料系 >> 教授 >> 雷志斌 >> 正文
雷志斌


教育及工作经历

PhD, University of Science and Technology of China (USTC), China (1999-2002)

中国科学技术大学,理学博士学位

Post-doc., Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, China (2002-2004)

中国科学院大连化学物理研究所,博士后

Visiting Professor, Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan (2008-2009)

台湾中央研究院原子与分子科学研究所,访问教授

Senior Research Fellow, National University of Singapore, Singapore (2009-2011)

新加坡国立大学,高级研究学者

Professor, School of Materials Science and Engineering, Shaanxi Normal University (2012至今)

陕西师范大学教授、博士生导师

Tel: +86-(0)29-81530810
Fax: +86-(0)29-81530702
E-mail:
zblei@snnu.edu.cn

研究方向

1. 超级电容器

2. 离子电容器

3. 柔性电极与器件

  

近年来主持的科研项目

1.  国家自然科学基金面上项目(51772181):织构碳纤维表面孔缺陷诱导生长多尺度氧化铁及界面耦合增强电容性能60, 2018.1-2021.12.

2. 陕西省自然科学基础研究计划-陕煤联合基金项目(2019JLP-12):“煤基石墨烯规模制备及其高能量密度超级电容器基础研究”,50万元,2019.1-2021.12.

3. 国家自然科学基金面上项目(21373134):三维网络结构石墨烯电极表面官能团调控及电容性能研究84, 2014.1-2017.12

4. 国家自然科学青年基金(20403018):过渡金属氧硫化物催化剂的合成及其光催化分解水制氢22, 2005.1-2007.12.

5. 教育部留学回国人员科研启动基金:石墨烯上氧化物赝电容材料的组装合成及不对称超级电容器构建3万,2013.1-2014.12.

6. 陕西省自然科学基金(2013JM2001):石墨烯表面官能团的调控及其超级电容性能4万,2014.1-2015.12.

 

授权专利


  1. 雷志斌,张文亮,于航,郅磊,李婷,一种基于多孔碳纤维布的全固态柔性超级电容器及其制备方法。中国发明专利,专利号:ZL 201710428188.3

  2. 雷志斌,李敬,纳米Nb2O5/碳布复合电极材料的制备方法。中国发明专利,专利号:ZL 201810116555.0

  3. 雷志斌,李敬,一种KNb3O8纳米片/碳布复合材料的制备方法。中国发明专利,专利号:ZL 201811618356.6

  4. 雷志斌,辛福恩,源于木材的多孔碳上生长螺旋状碳纳米管的方法。中国发明专利,专利号:ZL 201810117251.6

  5. 雷志斌,牛斐,韩喜盈,孙惠,郭瑞,碳纤维布/(3,4-乙烯二氧噻吩)纳米管复合材料及其制备方法,中国发明专利,专利号:ZL202010512850.5.

  6. 雷志斌,牛斐,张文亮,郭瑞,孙惠,一种织构化碳纤维布/碳纳米管复合材料的制备方法。中国发明专利,公开号:ZL201911045225.8


代表性论文

  1. Highly capacitive MXene film by incorporating poly(3,4-ethylenedioxythiophene) hollow spheres prepared through an interfacial oxidation polymerization.

    Xianchi Zhang, Diheng Xin, Zhiyuan Yu, Jie Sun, Qi Li, Xuexia He, Zonghuai Liu, Zhibin Lei*

    Journal of Colloid Interface Science, 2025, 677, 472-481 [DOI: 10.1016/j.jcis.2024.08.102

  2. Pre-Intercalation of TMA Cations in MoS2 Interlayers for Fast and Stable Zinc Ion Storage.

    Diheng Xin, Xianchi Zhang, Zhanrui Zhang, Jie Sun, Qi Li, Xuexia He, Ruibin Jiang, Zonghuai Liu, Zhibin Lei*

    Small, 2024, [DOI: 10.1002/smll.202403050]

  3. N-Doped Ti3C2Tx Interfacial Layer Enabling Uniform Zn Deposition Along (002) Plane for Stable Aqueous Zinc Ion Battery.

    Zhanrui Zhang, Yao Wang, Jie Sun, Liqin Dang, Qi Li, Xuexia He, Zonghuai Liu, Zhibin Lei*

    Small, 2024, [DOI: 10.1002/smll.202402636]

  4. Incorporation of HNb3O8 Nanosheets into PEDOT Aerogel with Enhanced Performance for Lithium Ion Capacitor.

    Zhiyuan Yu, Xianchi Zhang, Xuexia He, Qi Li, Jie Sun, Zonghuai Liu, Zhibin Lei*

    ACS Applied Energy Materials, 2024, 7, [DOI: 10.1021/acsaem.4c00742]

  5. Highly reversible and dendrite-free zinc anodes enabled by PEDOT nanowires interfacial layer for aqueous zinc-ion batteries.

    Yao Wang, Zhanrui Zhang, Liwen Wang, Jingxuan Wang, Weijia Meng*, Jie Sun, Qi Li, Xuexia He, Zonghuai Liu, Zhibin Lei*

    ACS Applied Materials Interface, 2024, 16, 43026-43037 [DOI: 10.1021/acsami.4c09699]

  6. Interfacial polymerization of PEDOT sheath on V2O5 nanowires for stable aqueous zinc ions storage.

    Ting Yang, Diheng Xin, Nan Zhang, Jing Li, Xianchi Zhang, Liqin Dang, Qi Li, Jie Sun, Xuexia He, Ruibin Jiang, Zonghuai Liu, Zhibin Lei*

    Journal of Materials Chemistry A, 2024, 12, 10137-10147 [DOI: 10.1039/D4TA01136H]

  7. PEDOT Nanowires Connecting Exfoliated HNb3O8 Nanosheets as High-Rate Anode for Lithium-Ion Capacitor.

    Yu Zhang, Zhiyuan Yu, Xianchi Zhang, Xuexia He, Qi Li, Jie Sun, Liqin Dang, Zonghuai Liu, Zhibin Lei*

    ACS Sustainable Chemistry & Engineering, 2023, 11, 14816-14826 [DOI: 10.1021/acssuschemeng.3c05049]

  8. Interfacial Designs of MXenes for Mild Aqueous Zinc-Ion Storage.

    Rui Guo, Chaofan Chen, Lars J. Bannenberg, Hao Wang, Haozhe Liu, Minghao Yu, Zdenek Sofer, Zhibin Lei*, Xuehang Wang*

    Small Methods, 2023, 7, 2201683 [DOI: 10.1002/smtd.202201683] (Review article)

  9. Highly Flexible PEDOT Film Assembled with Solution-Processed Nanowires for High-Rate and Long-Life Solid-State Supercapacitor.

    Xiying Han, Jie Sun,* Qi Li, Xuexia He, Liqin Dang, Zonghuai Liu, Zhibin Lei*

    ACS Sustainable Chemistry & Engineering, 2023, 11, 2938-2948 [DOI: 10.1021/acssuschemeng.2c06423]

  10. Thickness-Independent Capacitive Performance of Holey Ti3C2Tx Film Prepared through A Mild Oxidation Strategy.

    Rui Guo, Pen Yuan, Xiying Han, Xuexia He, Jiangbo Lu, Qi Li, Liqin Dang, Jie Sun*, Zonghuai Liu, Zhibin Lei*

    Small, 2023, 19, 2205947 [DOI: 10.1002/smll.202205947].

  11. Incorporating Conducting PEDOT between Graphene Films for Stable Capacitive Energy Storage.

    Xiaoyan Zhu†, Yu Zhang†, Xiying Han, Liqin Dang, Qi Li, Xuexia He, Jie Sun, Zonghuai Liu, Zhibin Lei*

    ACS Applied Nano Materials, 2022, 5, 19006-19016 [DOI: 10.1021/acsanm.2c04878]

  12. Vapor-phase polymerization of fibrous PEDOT on carbon fibers film for fast pseudocapacitive energy storage.

    Xiaoyan Zhu, Xiying Han, Rui Guo, Peng Yuan, Liqin Dang, Zonghuai Liu, Zhibin Lei*

    Applied Surface Science, 2022, 597, 153684 [DOI: 10.1016/j.apsusc.2022.153684]

  13. Filling Ti3C2Tx Nanosheets into Melamine Foam towards A Highly Compressible All-In-One Supercapacitor.

    Rui Guo, Xiying Han, Peng Yuan, Xuexia He, Qi Li, Jie Sun, Liqin Dang, Zonghuai Liu, Yating Zhang*, Zhibin Lei*

    Nano Research, 2022, 15, 3254-3263 [DOI: 10.1007/s12274-021-3970-2].

  14. Lithium Storage in Carbon Cloth Supported KNb3O8 Nanorods toward High-Performance Lithium-ion Capacitor.

    Hui Sun, Fei Niu, Peng Yuan, Xuexia He, Jie Sun, Zonghuai Liu, Qi Li*, Zhibin Lei*

    Small Structures, 2021, 2, 2100029 [DOI: 10.1002/sstr.202100029].

  15. Cotton Fibric-Derived Hybrid Carbon Network with N-Doped Carbon Nanotubes Grown Vertically as Flexible Multifunctional Electrodes for High-Rate Capacitive Energy Storage.

    Wenliang Zhang, Rui Guo, Liqin Dang, Jie Sun, Zonghuai Liu, Zhibin Lei*

    Journal of Power Sources, 2021, 507, 230303 [DOI: 10.1016/j.jpowsour.2021.230303].

  16. Connecting PEDOT Nanotube Arrays by Polyaniline Coating toward a Flexible and High-Rate Supercapacitor.

    Fei Niu, Xiying Han, Hui Sun, Qi Li, Xuexia He, Zonghuai Liu, Jie Sun, and Zhibin Lei*

    ACS Sustainable Chemistry & Engineering, 2021, 9, 4146-4156 [DOI: 10.1021/acssuschemeng.0c09365].

  17. Porous PEDOT Network Coated on MoS2 Nanobelts Towards Improving Capacitive Performance.

    Yufeng Jia, Yuan Yuan, Jie Sun, Liqin Dang, Zonghuai Liu, Zhibin Lei*

    ACS Sustainable Chemistry & Engineering, 2020, 8, 12696-12705 [DOI: 10.1021/acssuschemeng.0c04791].

  18. Coral-Like PEDOT Nanotubes Arrays on Carbon Fibers as High-Rate Flexible Supercapacitor Electrode

    Fei Niu, Rui Guo, Liqin Dang, Jie Sun, Qi Li, Xuexia He, Zonghuai Liu, Zhibin Lei*

    ACS Applied Energy Materials, 2020, 3, 7794-7803 [DOI: 10.1021/acsaem.0c01202]

  19. Incorporation of electroactive NiCo2S4 and Fe2O3 into graphene aerogel for high-energy asymmetric supercapacitor.

    Rui Guo, Liqin Dang, Zonghuai Liu, Zhibin Lei*

    Colloids and Surface A: Physicochemical and Engineering Aspects, 2020, 602, 125110 [DOI: 10.1016/j.colsurfa.2020.125110]

  20. Boosting Pseudocapacitive Performance of KNb3O8 Nanorods by Growing on Textile Carbon Cloth and Carbon Layer Coating.

    Hui Sun, Jing Li, Jie Sun, Liqin Dang, Zonghuai Liu, Zhibin Lei*

    Journal of Physical Chemistry C, 2020, 124, 11358-11367 [DOI: 10.1021/acs.jpcc.0c03174]

  21. Growing Iron Oxide Nanosheets on Highly Compressible Carbon Sponge for Enhanced Capacitive Performance.

    Xu Liang, Yufeng Jia, Zonghuai Liu, Zhibin Lei*

    Acta Physico-Chimica Sinica, 2020, 36, 1903034 [DOI: 10.3866/PKU.WHXB201903034].

  22. Nitrogen-doped carbon sheets coated on CoNiO2@textile carbon as bifunctional electrodes for asymmetric supercapacitor.

    Rui Guo, Jing Li, Yufeng Jia, Fuen Xin, Jie Sun, Liqin Dang, ZongHuai Liu, Zhibin Lei*.

    Journal of Materials Chemistry A, 2019, 7, 4165-4174 [DOI: 10.1039/C9TA00014C].

  23. Textile carbon network with enhanced areal capacitance prepared by chemical activation of cotton cloth.

    Wenliang Zhang, Rui Guo, Jie Sun, Liqin Dang, Zonghuai Liu, Zhibin Lei*, Qijun Sun*

    Journal of Colloid & Interface Science, 2019, 553, 705-712 [DOI: 10.1016/j.jcis.2019.06.048].

  24. Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode.

    Jiaxin Ma, Jing Li, Rui Guo, Hua Xu, Feng Shi, Liqin Dang, Zonghuai Liu, Jie Sun,* Zhibin Lei*.

    Journal of Power Sources, 2019, 428, 124-130 [DOI: 10.1016/j.jpowsour.2019.04.101]

  25. Enhancing the Capacitive Performance of Carbonized Wood by Growing FeOOH Nanosheets and PEDOT Coating.

    Fuen Xin, Yufeng Jia, Jie Sun, Liqin Dang, Zonghuai Liu, Zhibin Lei*

    ACS Applied Materials Interfaces, 2018, 10, 32192-32200 [DOI: 10.1021/acsami.8b11069]

  26. Holey Nickel-Cobalt Layered Double Hydroxide Thin Sheets with Ultrahigh Areal Capacitance.

    Lei Zhi, Wenliang Zhang, Liqin Dang, Jie Sun, Feng Shi, Hua Xu, Zonghuai Liu, Zhibin Lei*

    Journal of Power Sources, 2018, 387, 108-116 [DOI: 10.1016/j.jpowsour.2018.03.063]

  27. Highly Compressible Carbon Sponge Supercapacitor Electrode with Enhanced Performance by Growing Nickel-Cobalt Sulfide Nanosheets.

    Xu Liang, Kaiwen Nie, Xian Ding, Liqin Dang, Jie Sun, Feng Shi, Hua Xu, Ruibin Jiang, Xuexia He, Zong-Huai Liu, and Zhibin Lei*

    ACS Applied Materials Interfaces, 2018, 10, 10087-10095 [DOI: 10.1021/acsami.7b19043]

  28. Facile Electrochemical Fabrication of Porous Fe2O3 Nanosheets for Flexible Asymmetric Supercapacitor.

    Ting Li, Hang Yu, Lei Zhi, Wenliang Zhang, Liqin Dang, Zong-Huai Liu, and Zhibin Lei*

    Journal of Physical Chemistry C, 2017, 121, 18982-18991 [DOI: 10.1021/acs.jpcc.7b04330]

  29. Capacitive Performance of Porous Carbon Nanosheets Derived from Biomass Cornstalk.

    Hang Yu, Wenliang Zhang, Ting Li, Lei Zhi, Liqin Dang, Zonghuai Liu, Zhibin Lei*

    RSC Advances, 2017, 7, 1067-1074 [DOI: 10.1039/C6RA25899A]

  30. Hierarchical Graphene Network Sandwiched by a Thin Carbon Layer for Capacitive Energy Storage.

    Lei Zhi, Ting Li, Hang Yu, Shuangbao Chen, Liqin Dang, Hua Xu, Feng Shi, Zonghuai Liu, Zhibin Lei*.

    Carbon, 2017, 113, 100-107 [DOI: 10.1016/j.carbon.2016.11.036]

  31. High-Energy Asymmetric Electrochemical Capacitors Based on Oxides Functionalized Hollow Carbon Fibers Electrodes.

    Ting Li, Wenliang Zhang, Lei Zhi, Hang Yu, Liqin Dang, Feng Shi, Hua Xu, Fangyuan Hu, Zonghuai Liu, Zhibin Lei,* Jieshan Qiu*

    Nano Energy, 2016, 30, 9-17 [DOI: 10.1016/j.nanoen.2016.09.023]

  32. Functionalization of Chemically Derived Graphene for Improving Its Electrocapacitive Energy Storage Properties.

    Zhibin Lei, Jintao Zhang, Li Li Zhang, Nanjundan Ashok Kumar, X. S. Zhao*

    Energy & Environmental Science, 2016, 9, 1891-1930 [DOI: 10.1039/c6ee00158k] (Review article).

  33. Polyaniline Nanorod Grown on Hollow Carbon Fibers as High-Performance Supercapacitor Electrode.

    Shuangyan Gao, Shuyue He, Peiyu Zang, Liqin Dang, Feng Shi, Hua Xu, Zonghuai Liu, Zhibin Lei*

    ChemElectroChem, 2016, 3, 1142-1149 [DOI:10.1002/celc.201600153R1].

  34. Green Synthesis of Holey Graphene Sheets and Their Assembly Into Aerogel with Improved Ion Transport Property.

    Peiyu Zang, Shuangyan Gao, Liqin Dang, Zonghuai Liu, Zhibin Lei*

    Electrochimica Acta, 2016, 212, 171-178 [DOI:10.1016/j.electacta.2016.06.146]

  35. Biomass-Derived Carbon Fiber Aerogel as Binder-free Electrode for High-Rate Supercapacitor.

    Ping Cheng,† Ting Li,† Hang Yu, Lei Zhi, Zonghuai Liu, Zhibin Lei*

    Journal of Physical Chemistry C, 2016, 120, 2079-2086 [DOI: 10.1021/acs.jpcc.5b11280].

  36. Extraordinarily High-Rate Capacitive Polyaniline Nanorod Arrays on Graphene Nanomesh.

    Shuangyan Gao, Peiyu Zang, Liqin Dang, Zonghuai Liu, Zhibin Lei*

    Journal of Power Sources, 2016, 304, 111-118 [DOI: 10.1016/j.jpowsour.2015.11.028].

  37. Thin-Sheet Carbon Nanomesh with an Excellent Electrocapacitive Performance.

    Huanjing Wang, Lei Zhi, Kaiqiang Liu, Liqin Dang, Zonghuai Liu, Zhibin Lei*, Chang, Yu, Jieshan Qiu*

    Advanced Functional Materials, 2015, 25, 5420-5427 [DOI: 10.1002/adfm.201502025] (highlighted as the inside front cover).

  38. Hierarchically Porous Carbon by Activation of Shiitake Mushroom for Capacitive Energy Storage.

    Ping Cheng, Shuangyan Gao, Peiyu Zang, Xiaofan Yang, Yonglong Bai, Hua Xu, Zonghuai Liu, Zhibin Lei*

    Carbon, 2015, 93, 315-324 [DOI: 10.1016/j.carbon.2015.05.056]

  39. Activation of Graphene Aerogel with Phosphoric Acid for Enhanced Electrocapacitive Performance.

    Xiuxia Sun, Ping Cheng, Huanjing Wang, Hua Xu, Liqin Dang, Zonghuai Liu, Zhibin Lei*

    Carbon, 2015, 92, 1-10 [DOI: 10.1016/j.carbon.2015.02.052]

  40. MnO2 Nanoflakes Grown on 3D Graphite Network for Enhanced Electrocapacitive Performance.

    Xiuxia Sun, Huanjing Wang, Zhibin Lei,* Zonghuai Liu, Lingling Wei*

    RSC Advances, 2014, 4, 30233-30240 [DOI: 10.1039/c4ra03983a]

  41. Creation of Nanopores on Graphene Planes with MgO Template for Preparing High-Performance Supercapacitor Electrodes.

    Huanjing Wang, Xiuxia Sun, Zonghuai Liu, Zhibin Lei*

    Nanoscale, 2014, 6, 6577-6584 [DOI: 10.1039/c4nr00538d]

  42. Platelet CMK-5 as an Excellent Mesoporous Carbon to Enhance the Pseudocapacitance of Polyaniline.

    Zhibin Lei,* Xiuxia Sun, Huanjing Wang, Zonghuai Liu, X. S. Zhao*

    ACS Applied Materials Interfaces, 2013, 5, 7501-7508 [ 10.1021/am4018016]

  43. A high-Energy-Density Supercapacitor with Graphene-CMK-5 as the Electrode and Ionic Liquid as the Electrolyte.

    Zhibin Lei,* Zonghuai Liu, Huanjing Wang, Xiuxia Sun, Li Lu, X. S. Zhao*

    Journal of Materials Chemistry A, 2013, 1, 2313-2321 [DOI: 10.1039/c2ta01040b]

  44. The Electrocapacitive Properties of Graphene Oxide Reduced by Urea.

    Zhibin Lei, Li Lu,* X. S. Zhao*

    Energy & Environmental Science, 2012, 5, 6391-6399 [DOI: 10.1039/c1ee02478g]

  45. Incorporation of MnO2-coated Carbon Nanotubes between Graphene Sheets as Supercapacitor Electrode.

    Zhibin Lei, Fuhua Shi, Li Lu,*

    ACS Applied Materials Interfaces, 2012, 4, 1058-1064 [DOI: 10.1021/am2016848]

  46. Ultrathin MnO2 Nanofibers Grown on Graphitic Carbon Spheres as High-performance Asymmetric Supercapacitor Electrodes.

    Zhibin Lei, Jintao Zhang, X. S. Zhao*

    Journal of Materials Chemistry, 2012, 22, 153-160 [DOI: 10.1039/c1jm13872c].

  47. Intercalation of Mesoporous Carbon Spheres between Reduced Graphene Oxide Sheets for Preparing High-rate Supercapacitor Electrodes.

    Zhibin Lei, Nikolay Christov, X. S. Zhao*

    Energy & Environmental Science, 2011, 4, 1866-1873 [DOI: 10.1039/c1ee01094h]

  48. Mesoporous Carbon Nanospheres with an Excellent Electrocapacitive Performance.

    Zhibin Lei, Nikolay Christov, Li Li Zhang, X. S. Zhao*

    Journal of Materials Chemistry 2011, 21, 2274-2281 [DOI: 10.1039/C0JM03322G]

  49. Growth of Polyaniline on Hollow Carbon Spheres for Enhancing Electrocapacitance.

    Zhibin Lei, Zhongwei Chen, X. S. Zhao*

    Journal of Physical Chemistry C, 2010, 114, 19867-19874 [DOI: 10.1021/jp1084026]

 

最近更新时间:2019-06-27 点击量:

扫描此二维码手机上查看当前信息