哲学社会科学版
陕西师范大学学报(哲学社会科学版)
经济学研究
环境分权体制下人工智能对环境污染治理的影响
PDF下载 ()
张伟, 李国祥
(中国地质大学(武汉), 经济管理学院, 湖北 武汉430074; 南京师范大学 商学院, 江苏 南京 210046)
张伟,男,河南上蔡人,管理学博士,中国地质大学(武汉)经济管理学院教授。
摘要:
随着环境分权赋予地方政府更大的环境管理权限,地方政府应用人工智能技术为环境污染治理开辟了新的路径。环境分权激发了地方政府环境保护的积极性,提高环境污染治理效率,也会诱发地方政府环境监管松懈,造成环境质量恶化。人工智能的应用实现环境精细化管理,改善了政府间及政府内部行政效率;人工智能构建的生态环境智能监管体系提升了跨区域监管效率,实现环境污染的有效治理。进一步提出加快构建智能化环境污染治理体系,提高利益主体参与度等措施,从而实现人工智能与环境污染治理的有效结合。
关键词:
人工智能; 环境分权; 环境污染治理; 环境风险
收稿日期:
2020-05-20
中图分类号:
F205
文献标识码:
A
文章编号:
1672-4283(2021)03-0121-09
基金项目:
国家社会科学基金项目“我国自然资源产业质量发展的精准、高效、可持续金融支持研究”(20BGL189)
Doi:
The Impact of Artificial Intelligence on Environmental Pollution Management in the Context of Environmental Decentralization
ZHANG Wei, LI Guoxiang
(School of Economics and Management, China university of geosciences (Wuhan),Wuhan 430074,Hubei; Business School, Nanjing Normal University, Nanjing 210046, Jiangsu)
Abstract:
With environmental decentralization giving local governments greater environmental management authority, the application of AI technology by local governments opens a new path for environmental pollution management. Environmental decentralization stimulates local governments enthusiasm for environmental protection and improves the efficiency of environmental pollution management, but it also induces local governments to be lax in environmental regulation, causing the environmental quality to deteriorate. The application of artificial intelligence realizes environmental refinement management and improves interand intragovernmental administrative efficiency.The intelligent supervision system of ecological environment built by artificial intelligence enhances cross-regional supervision efficiency and realizes effective management of environmental pollution. Making suggestions such as accelerating the construction of intelligent environmental pollution governance system and improving the participation of interest subjects are further proposed, realizing the effective combination of artificial intelligence and environmental pollution governance.
KeyWords:
artificial intelligence; environmental decentralization; environmental pollution control; environmental risk