哲学社会科学版
陕西师范大学学报(哲学社会科学版)
经济学研究
融资约束对战略性新兴产业投资效率的影响
PDF下载 ()
冯根福, 睢博, 赵玮
(西安交通大学 经济与金融学院, 陕西 西安 710061)
冯根福,男,河南新郑人,经济学博士,西安交通大学经济与金融学院教授,博士研究生导师。
摘要:
依据异质性随机前沿模型对融资约束下的战略性新兴产业投资效率进行测算,研究结果表明:融资约束下的战略性新兴产业实际平均投资效率比最优水平低29.8%;股权融资和债权融资在缓解融资约束方面较为有效,但却带来了未来融资的不确定性。进一步研究发现,国有企业和东部地区企业面临的融资约束水平较低,规模较大的企业和非国有企业具有较高的投资效率。基于此,可以通过提高自身盈利能力,适度降低融资门槛,建立与完善国内风险投资市场、创业投资和股权投资基金,逐步解除我国战略性新兴产业的融资约束及其融资不确定性,从而全面推动我国战略性新兴产业的繁荣和发展。
关键词:
战略性新兴产业; 投资效率; 融资约束; 随机前沿模型
收稿日期:
2015-02-15
中图分类号:
F830.3; F830.59
文献标识码:
A
文章编号:
1672-4283(2015)04-0064-12
基金项目:
国家社会科学基金项目(14BJY00); 教育部人文社会科学规划项目(09JYA790162)
Doi:
Effects of Financing Constraints on Investment Efficiency of New Strategic Industries
FENG Genfu, SUI Bo, ZHAO Wei
(College of Economics and Banking, Xi’an Jiaotong University, Xi’an 710061, Shaanxi)
Abstract:
A measurement of the investment efficiency of new strategic industries under the constraint of financing by the Heterogeneous Stochastic Frontier Model finds that the average investment efficiency of new strategic industries is 29.8% lower that the best. While the stock right and obligatory right financing is relatively effective in softening financing constraint, it brings about the uncertainty of future financing. Further analysis shows that state enterprises and enterprises in Eastern China are faced with a low level of investment financing, but large-size enterprises and nonstate enterprises enjoy a relatively high level of investment efficiency. Based on these results, it is recommended that the uncertainty and constraint of investment financing faced by our new strategic industries can hope to be gradually removed by elevating their own capacity of making profits, properly reducing the criteria of investment financing, and establishing and perfecting domestic market of venture capital, startup investment and fund of stock right investment so as to wholesomely promote the development and prosperity of our new strategic industries.
KeyWords:
new strategic industries; investment efficiency; financing constraint; the Heterogeneous Stochastic Frontier Model