欢迎光临陕西师范大学数学与统计学院!   

教授
当前位置: 首页 > 师资队伍 > 教授 > 正文
  • 姓名:李志慧
  • 性别:女
  • 职称:教授
  • 职务:
  • E-mail:lizhihui@snnu.edu.cn
  • 工作室:文津楼2段3层2305
性别 职称 教授
职务 E-mail lizhihui@snnu.edu.cn
工作室 文津楼2段3层2305

基本情况

  •     1985-1989年于陕西师范大学数学系读本科,获学士学位;

  •     1989-1992年于陕西师范大学数学系攻读硕士学位,研究方向为群论,获理学硕士学位;

  •     1999-2003年于西北工业大学计算机学院攻读博士学位,研究方向为计算机软件与理论,获工学博士学位;

  •     1993至今在陕西师范大学数学系工作。

代表性学术论文

  • 1. Zhihui Li*, Duo Han, Chengji Liu, Feifei Gao. The phase matching quantum key distribution protocol with 3-state systems, Quantum Information Processing , 2021, 20:11.

  • 2. Danli Zhi, Zhihui Li* , Zhaowei Han, Lijuan Liu. Verifiable Quantum Secret Sharing Based on a Single Qudit, International Journal of Theoretical Physics (2020) 59:3672–3684.

  • 3. Danli Zhi, Zhihui Li* , Lijuan Liu, Zhaowei Han. (A Hybrid Quantum Secret Sharing Scheme Based on Mutually Unbiased Bases. In: Xu G., Liang K., Su C. (eds) Frontiers in Cyber Security. FCS 2020. Communications in Computer and Information Science, vol 1286. Springer, Singapore.

  • 4. Chunfeng Suo , Zhihui Li* . An (R, S)-norm information measure for hesitant fuzzy sets and its application in decision-making, Computational and Applied Mathematics (2020) 39:286.

  • 5. Lijuan Liu, Zhihui Li* , Zhaowei Han, Danli Zhi. A quantum secret sharing scheme with veriable function, Eur. Phys. J. D (2020) 74: 154

  • 6. Feifei Gao, Zhihui Li* , Chengji Liu, Duo Han. A polarization quantum key distribution scheme based on phase matching, Laser Phys. 30 (2020) 055202 (6pp).

  • 7. Haiyan Bai, Zhihui Li*  , Na Hao. Quantum Security Computation on Shared Secrets. International Journal of Theoretical Physics. 2018-10-15.

  • 8. Chengji Liu, Zhihui Li* , Chenming Bai, Mengmeng Si. Quantum-secret-sharing scheme based on local distinguishability of orthogonal seven-qudit entangled states. International Journal of Theoretical Physics, 2018, 57(2): 428-442.

  • 9. Chenming Bai, Zhihui Li* , Jingto Wang, Chengji Liu. Restricted (k, n)-threshold quantum secret sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Quantum Information Processing, 2018, 17(11): 312.

  • 10. Chenming Bai, Zhihui Li* . Sequential quantum secret sharing using a single qudit.  Communications in Theoretical Physics, 2018, 69(5): 513.

  • 11. Chenming Bai, Zhihui Li* . Improving fidelity of quantum secret sharing in noisy environments. The European Physical Journal D, 2018, 72(7): 126.

  • 12. Chenming Bai, Zhihui Li* . Chengji Liu, Quantum secret sharing using orthogonal multiqudit entangled states. Quantum Information Processing, 2017, 16(12): 304.

  • 13. Chenming Bai, Zhihui Li* , Tingting Xu.  Quantum secret sharing using the d-dimensional GHZ state. Quantum Information Processing, 16:59, 2017.

  • 14. Tingting Xu,Zhihui Li* ,Chenming Bai,Min Ma,:A New Improving Quantum Secret Sharing Scheme. International Journal of Theoretical Physics. Volume 56, 4, 1308–1317, 2017.

  • 15. Chenming Bai,  Zhihui Li* , Mengmeng Si, and Yongming Li,Quantum secret sharing for a general quantum access structure,The European physical journal D,2017,71: 255

  • 16. Yun Song, Zhihui Li* , Yongming Li, Jing Li. Attribute-based signcryption scheme on linear codes. Information Sciences, 2017, 417:301-309.

  • 17. Zhihui Li, Yun Song* , Idea access structures based on a class of minimal linear codes, International Journal of Computer Mathematics, 2016.

  • 18. Yun Song, Zhihui Li* , A new multi-use multi-secret sharing scheme based on the duals of minimal linear codes, Security and Communication Networks, 8(2), 2015: 202-211.

  • 19. Yun Song, Zhihui Li* , Yongming Li. The optimal information rate of the graph access structures on nine participants. Frontiers of Computer Science, 2015.

  • 20. Zhihui Li* , YunSong, Yongming Li. The optional information rates of the graph access structures on seven participants, Advanced Materials Research , Trans Tech  Publications, Switzerland, Vol. 859, 2014: 596-601.

  • 21. Zhihui Li* , Jianhong Sun, JingLi.  A Novel Secret Sharing Scheme Based on Minimal Linear Codes , Wuhan University Journal of Natural Sciences, Vol.18, No.2, 2013 : 407-412.

  • 22. YunSong , Zhihui Li* . The information rate of secret sharing schemes on seven participants by connected graphs, Lecture Notes in Electrical Engineering, Vol.4(127), 2012: 637-645.

  • 23. Zhihui Li* , JingLi , YunSong . A novel multi-secret sharing scheme based on linear codes, IEEE International Conference on Power Electronics Engineering and Computer Technology (PEECT2012) , 2012:214-217.

  • 24. WeiCong Wang, ZhiHui Li* , Yun Song. The optimal information rate of perfect secret sharing schemes, 2011 IEEE International Conference on business management and electronic information, 2011: 207-212.

  • 25. QianQian Zhang, ZhiHui Li* . A verifiable secret sharing Scheme without dealer in vector space, 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD2011: 2222-2225.

  • 26. Zhihui Li* , TingXue, HongLai. Secret sharing scheme from binary linear codes, Information Science,180, 2010: 4412-4419.

  • 27. Zhihui Li* , PingLi, YongMingLi. The relationships among several types of fuzzy automata, Information Science, 176, 2006: 2208-2225.

  • 28. 宋云; 李志慧*; 王文华. 一般存取结构上抗内存泄露的可证安全的多级秘密共享, 软件学报,2021,doi.10.13328/j.cnki.jos.006296.  

  • 29. 宋云, 李志慧* , 基于极小线性码上的秘密共享方案, 电子学报, Vol.41(2), 2013: 220-226.

  • 30. 宋云, 李志慧* , 李永明,含至多四个参与者的量子秘密共享方案的最优信息率, 电子学报, Vol.42,No.10, 2014:1951-1956.

  • 31. 宋云, 李志慧* , 极小特权数组上的理想的多秘密共享方案, 中国科学:信息科学, Vol.44,No.5, 2014, :610-622.

  • 32. 李志慧, 高等代数研究问题的基本方法的教学实施, 数学教育学报, Vol.22, No.2,2014.

  • 33. 李志慧, 李永明, 高等代数中的典型问题与方法(第二版), 北京:科学出版社, 2016年.

教育科研项目

  • 1. 国家自然科学基金资助项目:经典与量子秘密共享中存取结构及其信息率的研究 (61373150, 2013.01-2017.12), 主持人 ;

  • 2. 陕西省科技计划项目:秘密共享中存取结构及其信息率的研究 (No. 2013k0611, 2013.01-2016.12.30), 主持人;

  • 3. 陕西省科技计划项目:密码学中置换理论的研究 (2007A06, 2007.1-2010.12), 主持人.

教育科研奖励

  • 1. 获陕西师范大学教学质量优秀奖三次.

  • 2. 获陕西师范大学教书育人奖两次.

  • 3. 2017年被评为陕西师范大学教学标兵.

  • 4. 所授课程《高等代数》获陕西省省级精品课程,2011,主持人.

  • 5. 2019年获宝钢教育基金优秀教师奖.

讲授课程

  • 本科生课程:高等代数,高等代数选讲,近世代数,数学物理方法.

  • 研究生课程:有限域,代数编码, 量子密码, 代数学,密码学原理与实践.




    上一条:李愿 下一条:梁菊花

    关闭