邵长国

发布时间:2023-05-07浏览次数:717

姓  名

邵长国

性  别


出生年月

 

学历学位

理学博士

职  称

教授

部  门

理学院信息与计算科学系

导师类别

硕导

指导专业

基础数学-有限群

办公地点

 

办公电话

 

电邮地址

Shaoguozi@163.com

个人主页

 

主授课程

本科生:高等代数,线性代数与解析几何,抽象代数;研究生:有限群,代数学选讲

社会

兼职

 

研究

方向

有限群

1.有限群共轭类(长);

2.有限群不变子群;

3.有限群表示论

4.有限群的数量刻画

个人

简历

20224月由济南大学调入南京邮电大学理学院工作, 从事教学和科研工作。

2017.02-2017.12应邀访问西班牙海梅一世大学。

主要

成果

目前已在Israel Journal of MathematicsJOURNAL OF ALGEBRA Sci. China Math.  Forum Mathematicum等杂志发表论文70余篇,其中SCI论文49篇。

研究

项目

1. 有限群的共轭类与有限群结构,国家自然科学基金委面上项目,2021.01-2024.12, 52万,主持.

2. 互素作用下不变子群与有限群的结构, 山东省自然科学基金委,2021.01-2023.12,10, 主持.

3. 元素的共轭类长对有限群及正规子群的结构的影响, 山东省自然科学基金委, 2019.06-2022.06, 14万,参与.

荣誉

奖励

2017年 山东高等学校优秀科研成果奖三等奖(1/2) 山东省教育厅

2015年 山东高等学校优秀科研成果奖三等奖(1/2) 山东省教育厅

论著
代表作

发表SCI论文

       1.       Antonio Beltran*, Changguo Shao, New conditions on maximal invariant subgroups that imply solubility, Results in Mathematics, accepted.

      2.       Changguo Shao, Qinhui Jiang*, Invariant self-centralizing subgroups and  structure of finite groups, Journal of Algebra and Its Applications, doi.org/10.1142/S0219498824502037

     3.       Changguo Shao, Qinhui Jiang*, Groups in which the centralizer of any non-central primary element is maximal, Forum Math. 35(2), 383–3902023

      4.       Changguo Shao*, Antonio Beltrán, SECOND MAXIMAL INVARIANT SUBGROUPS AND SOLUBILITY OF FINITE GROUPS,Communications in Mathematics and Statistics, doi.org/10.1007/s40304-021-00279-y

 

2022年以前

5.       Changguo Shao, Antonio Beltrán*, Invariant TI-subgroups and structure of finite groups, Journal of Pure and Applied Algebra, 224(4): 106566, 2021.

6.       Beltrán, A., Shao, C. Correction to: A coprime action version of a solubility criterion of Deskins. Monatsh Math 191, 657-660 (2020). https://doi.org/10.1007/s00605-020-01367-x

7.       Shao Changguo, Jiang Qinhui, Finite groups whose conjugacy class sizes of primary andbiprimary elements are Hall numbers, Publ. Math. Debrecen 96/3-4 (2020), 281-289

8.        Jiang Qinhui, Shao Changguo, Zhan Yan, Finite groups with exactly one composite conjugacy class size, Proc. Indian Acad. Sci. (Math. Sci.), 130, 5 (2020).

9.       Shao Changguo, Jiang Qinhui, Determining group structure by set of conjugacy class sizes, Communications in Algebra, 48:4, 1626-1631, 2020

10.     Changguo Shao, Antonio Beltrán*, Orbits of maximal invariant subgroups and solvability of finite groups, Journal of Algebra, 539(1)(2019): 117-200.

11.    Shao Changguo, Jiang Qinhui, A New characterization of PSL$(2, q)$ by group order and the set of vanishing element orders, Algebra Colloquium, 26 : 3 (2019) 459-466.

12.    Changguo Shao*, Antonio Beltrán, INDICES OF MAXIMAL INVARIANT SUBGROUPS AND SOLVABILITY OF FINITE GROUPS, Mediterranean Journal of Mathematics, 16 (2019), no. 3, Art. 75, 9pp.

13.     Antonio Beltrán*, Changguo Shao, Restrictions on maximal invariant subgroups implying solvability of finite groups, Annali di Matematica (4) , 198 (2019), no. 2, 357–366.

14.    Antonio Beltrán*, Changguo Shao, A coprime action version of a solubility criterion of Deskins, Monatshefte für Mathematik, 188 (2019), no. 3, 461–466.

15.     Antonio Beltrán*, Changguo Shao, Conditions for Sylow 2-subgroups of the Fixed Point Subgroup ImplyingSolubility, Proc. Edinb. Math. Soc. (2) 62 (2019), no. 1, 211–220.

16.    Antonio Beltrán*, Changguo Shao, Arithmetical Conditions on Invariant Sylow Numbers, Mediterranean Journal of Mathematics, 15:49, 2018. 

17.     Shao changguo, Jiang, Qinhui, Structure of finite groups with four conjugacy class sizes of certain elements ,Communications in Algebra, 2018, 46(4):1484-1491.

18.     Antonio Beltrán*, Changguo Shao, On the number of invariant Sylow subgroups under coprime action,JOURNAL OF ALGEBRA , 490: 380–389, 2017.

19.     Qinhui JIANG and Changguo SHAO*, A new characterization of L2(127), MATH. REPORTS, 19(69), 4(2017), 361-366

20.     Jinshan Zhang*, Changguo Shao, and Zhencai Shen, A new characterization of Suzuki’s simple groups, J.Algebra Appl., 16(11), 6 pages, 2017.

21.     Q. H. Jiang; C. G. Shao; W. J. Shi*; Q. L. Zhang, A new characterization of L2(q) by the largest element orders, Bulletin of the Iranian Mathematical Society, 43(5), 1143–1151, 2017

22.     Qinhui Jiang and Changguo Shao, Primary and biprimary class sizes implying nilpotency of finite groups,Turkish Journal of Mathematics, 2016389-396

23.     Changguo Shao, Qinhui Jiang, Characterization of groups $L_2(q)$ by NSE where $q\in\{17, 27, 29\}$, Chinese Annals of Mathematics, Series B, 2016,37(1): 103-110.

24.     Antonio Beltran and Changguo ShaoInvariant class sizes and solvability of finite groups under coprime actionMath. Nachr. 2016, 289(2-3)187-193

25.     Changguo Shao, Qinhui Jiang, On normal subgroups with consecutive G-class sizeJournal of Algebra and Its Applications2016, 15(8), page 8.

26.     Jiang, Qinhui; Shao, Changguo; A new characterization of L2(p) by NSE. Proc. Indian Acad. Sci. Math.Sci.125 (2015), no. 4, 507–510.

27.     Changngguo Shao, Qinhui Jiang, A note on the solvability of finite groups with four particular conjugacy class sizes, Monatsh. Math., 178 (2015), no. 3, 453–456.

28.     CHANGGUO SHAO, QINHUI JIANG, Finite groups with three conjugacy class sizes of primary and biprimary elements, Turkish Journal of Mathematics, 39 (2015), no. 3, 346–355.

29.     Changguo Shao, A.Beltran, Coprime action and arithmetical conditions on invariant conjugacy classes, SCIENCE CHINA Mathematics, 2015, 58(12): 2499-2504.

30.     A.Beltrán, M.J.Felipe and C.G. Shao, Class sizes of prime-power order p’-elements and normal subgroups, Annali di Matematica, (4) 194 (2015), no. 5, 1527–1533.

31.    A Beltrán, MJ Felipe and CG Shao, p-divisibility of conjugacy class sizes and normal p-complements, J.Group Theory, 2015, 18(1):133–141.

32.    Q.H. Jiang and C. G. Shao*, Recognition of L2(q) by its group order and largest irreducible character degree, Monatsh Math, 2015,176:413-422.

33.     Q.H. Jiang, C.G. Shao*, Characterization of Some L2(q) by largest element orders, Mathematical Reports,2015, 17(67),4:353-358.

34.     Changguo Shao, Qinhui Jiang(*), An extension of a theorem of Alan Camina's on conjugacy class sizes, Israel Journal of Mathematics, 204:145-153, 2014.

35.     Changguo Shao, Qinhui Jiang(*), On conjugacy class sizes of primary and biprimary elements of a finite group, Sci. China Math., 57(3), pp 491-4982014.

36.     C. G. Shao and Q. H Jiang(*), A new characterization of some linear groups by nse, J. Algebra Appl. 13(2),1350094, 2014.

37.     Q.H. Jiang, C.G. Shao*, Solvability of finite groups with four class sizes of certain elements, Bulletin of the Australian Mathematical Society, 90250-2562014.

38.    C.G. Shao and Q.H. Jiang(*), Finite groups whose set of numbers of subgroups of possible order has exactly 2 elements, Czechoslovak Mathematical Journal, 64(3):827-831, 2014.

39.    C. G. Shao and Q.H. Jiang(*), A new characterization of PSL2(p) by NSE, J. Algebra Appl. 13(4), 1350123, 2014.

40.    Changguo Shao, Qinhui Jiang(*), Finite groups with two conjugacy class sizes of π-elements of primary and biprimary orders, Monatsh. Math., 169(1), pp 105-112, 2013.

41.    Q.H. Jiang, C.G. Shao*, Conjugacy class sizes and solvability of finite groups, Proc. Indian Acad. Sci. (Math.Sci.), 123(2), pp. 239-244, 2013.

42.     GuoPengfei, Ge Renfu, Shao Changguo*, Zhang Xiaohong, A complete classification of minimal non-MNP-groups, Comm. Algebra, 41(3), pp 1601-1607, 2013.

43.     A Beltrán, MJ Felipe and CG Shao. Corrigendum on the solvability of groups with four class sizes, J Algebra Appl. 2012,11(6), 1292001.

44.     Q.H. Jiang, C.G. Shao, X. Y. Guo(*) and W. J. Shi, On Thompson’s Conjecture of A10, Comm. Algebra,39(7), pp 2349-2353, 2011.

45.    C. G. Shao and Q. H. Jiang(*) , A new characterization of A22 by its spectrum, Comm. Algebra, 38(6), pp2138- 2141, 2010.

46.    Q.H. Jiang and C.G. Shao*, Finite groups with 24 elements of maximal order, Front. Math. China., 5(4), pp665-678, 2010.

47.    R.L. Shen, C.G. Shao ,Q.H. Jiang, W.J. Shi(*) and V. Mazurov, A new characterization of A5,Monatsh.Math., 160, pp 337-341, 2010.

48.    C. G. Shao*, S. Humphries, X. Z. You and J. S. Zhang, A note on conjugacy classes outside a normal subgroup, Comm. Algebra, 37, pp 3306-3308, 2009.

49.     C. G. Shao* and Q. H. Jiang, Characterization of simple K4-groups, Front. Math. China, 3, pp 355-370,2008.

EI: 3

50.     Shao Changguo, Jiang Qinhui, Li Kefeng, A characterization of simple group S4(7), Italian Journal of Pure and Applied Mathematics, 43: 153-157, 2020.

51.     Yan, Zhao, Changguo Shao*, Qinhui Jiang, Structure of finite groups with two real conjugacy class sizes, Italian Journal of Pure and Applied Mathematics, 42: 904-906, 2019.

52.     Qinhui Jiang, Changguo Shao*, A new characterization of L2(p) with p {19, 23} by NSE, Italian Journal of Pure and Applied Mathematics, 38: 624-630, 2017.

中文核心(部分):

53.    邵长国, 蒋琴会, 素数幂双素数幂阶元的共轭类长的个数为4 的有限群的结构, 数学年刊, 2018,39(1):1-6.

54.     邵长国,施武杰(*),蒋琴会,单K3-群的个特征性质,数学进展,38(3)pp 327-3302009.

联系地址

南京市栖霞区文苑路9号南京邮电大学

邮政编码

210023


Copyright © 南京邮电大学理学院  All Rights Reserved.