2019-TF1- Lithosphere structure and mineral resources


Publications in 2022:

1Artemieva IM, "Antarctica ice sheet basal melting enhanced by high mantle heat", Earth-Science Reviews 226, 103954, DOI 10.1016/j.earscirev.2022.103954, 2022.

2Augustin CT, Mungall JE, Schutesky ME, Ernst R, Garcia VB, "Petrological and geochemical characteristics ofthe mafic-ultramafic Americano do Brasil Complex, central Brazil, and the implications for its genesis", OreGeology Reviews, 105126, 2022.

3Li J, Dong S, Gao R, Cawood PA, et al., "The thinnest crust in South China associated with the Cretaceouslithospheric extension: evidence from SINOPROBE seismic reflection profiling", Tectonics 41,e2022TC007240, 2022.

4Zhang SH, Ernst RE, Yang Z, Zhou Z, Pei J, Zhao, "Spatial distribution of 1.4-1.3 Ga LIPs and carbonatiterelated REE deposits: Evidence for large-scale continental rifting in the Columbia (Nuna) supercontinent",Earth and Planetary Science Letters, 597, 117815, 2022.

5Zhou Z, Thybo H, Tang CC, Artemieva I, Kusky T, "Test of P-wave receiver functions for a seismic velocity andgravity model across the Baikal Rift Zone", Geophysical Journal International 232, 176-189, DOI:10.1093/gji/ggac335, 2022


Publications in 2021:

1Tectonics of Asia (Northern, Central and Eastern Asia)Petrov O.V.& Dong S. (Eds.), Springer, 262 pp., 2021


2021-TF2 - Deformation and magmatic processes from the lithosphere to the surface: integrated multidisciplinary approaches


Publications in 2024:

1Clunes, M., Browning, J., Cortez, J., Cembrano, J., Marquardt, C., Kavanagh, J. L., & Gudmundsson, A. (2024). Stresses induced by magma chamber pressurization altered by mechanical layering and layer dip. Journal of Geophysical Research: Solid Earth, 129(5), e2023JB027760.

2Hornby, A. J., Ayris, P. M., Damby, D. E., Diplas, S., Eychenne, J., Kendrick, J. E.,C. Cimarelli, U. Kueppers, B. Scheu, J. Utley, & D. B. Dingwell (2024). Nanoscale silicate melt textures determine volcanic ash surface chemistry. Nature Communications, 15(1), 531.

3Patten, C. G. C., Hector, S., Kilias, S., Ulrich, M., Peillod, A., Beranoaguirre, A., P. Nomikou, E. Eiche, & Kolb, J. (2024). Transfer of sulfur and chalcophile metals via sulfide-volatile compound drops in the Christiana-Santorini-Kolumbo volcanic field. Nature Communications, 15(1), 4968.

4Bosa, A. R., Bejar, G., Waite, G. P., Mock, J. C., Pineda, A., & Anderson, J. F. (2024). Dynamics of rain-triggered lahars and destructive power inferred from seismo-acoustic arrays and time-lapse camera correlation at Volcán de Fuego, Guatemala. Natural Hazards, 1-42.

5Pedicini, M., Bonali, F. L., Corti, N., & Tibaldi, A. (2024). Rift structure anddevelopment: The Krafla Fissure Swarm (Northern Iceland). Journal of Structural Geology, 105332.


Publications in 2023:

1Bretagne, E., Wadsworth, F. B., Vasseur, J., Humphreys, M. C., Dingwell, D. B., Dobson, K. J., Mangler M., & Rooyakkers, S. M. (2023). The permeability of loose magma mush. Geology.doi.org/10.1130/G51133.1

2Clunes, M., Browning, J., Marquardt, C., Cortez, J., Drymoni, K., & Kavanagh, J. (2023). Inclination and heterogeneity of layered geological sequences influence dike-induced ground deformation. Geology, 51(3), 278-283.

3Corti, N., Bonali, F. L., Russo, E., Drymoni, K., Mariotto, F. P., Gudmundsson, A., Esposito R., Cavallo A. & Tibaldi, A. (2023). Feeders vs arrested dikes: A case study from the Younger Stampar eruption in Iceland. Journal of Volcanology and Geothermal Research, 443, 107914.

4Drymoni, K., Tibaldi, A., Bonali, F. L., & Mariotto, F. A. P. (2023). Dyke to sill deflection in the shallow heterogeneous crust during glacier retreat: part I. Bulletin of Volcanology, 85(12), 73.

5Guillou, H., Scao, V., Nomade, S., Van Vliet-Lanoë, B., Liorzou, C., & Guðmundsson, Á. (2023). Combined unspiked K–Ar and 40Ar/39Ar dating applied to the dating of 80–260 ka old Icelandic sub-glacial rhyolites. Quaternary Geochronology, 77, 101457.



2021-TF3 - Global Lithospheric Stress - The World Stress Map in 3D


Publications in 2024:

1Rajabi, M., Ziegler, M., Heidbach, O., Mukherjee, S., Esterle, J., 2024. Contribution of mine borehole data toward high-resolution stress mapping: Example from northern Bowen Basin, Australia. Int. Journal of Rock Mechanics and Mining Sciences 173, 105630.

2Ziegler, M.O., Seithel, R., Niederhuber, T., Heidbach, O., Kohl, T., Müller, B., Rajabi, M., Reiter, K., Röckel, L., 2024. Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio. Solid Earth 15, 1047-1063.

3Rajabi, M., Ziegler, M., Ranjbarkarami, R., Tavoosiiraj, P., 2024. A novel approach for geomechanical modelling in the absence of stress magnitude data. Australian Energy Producers Journal 64, S275-S279.

4Reiter, K., Heidbach, O., Ziegler, M.O., 2024. Impact of faults on the remote stress state. Solid Earth 15, 305-327.

5Heidbach, O., Rajabi, M., Ziegler, M., Reiter, K., WSM Team, 2024. Recent Findings and Future of the World Stress Map Project, Tectonic Stress: from the lithosphere to the wellbore. The Geological Society, Burlington House, Piccadilly London.


Publications in 2023:

1Ziegler, M.O., Heidbach, O. & Rajabi, M. 2023. No data instead of big data – a novel approach to stress modelling. Saf. Nucl. Waste Disposal, 2, 79-80.

2Ziegler, M. O., & Heidbach, O. 2023. Bayesian quantification and reduction of uncertainties in 3D geomechanical-numerical models. JGR-Solid Earth, 128, e2022JB024855.

3Reiter, K., Heidbach, O., and Ziegler, M.: Impact of faults on the remote stress state, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1829, 2023.



2021-TF4 - Continental Lithosphere: a Broadscale Investigation (CoLiBrI)


Publications in 2024:

1Greenwood A, Hetényi G, Baron L, Zanetti A, Müntener O, MOS field team (2024 in press) Active seismic surveys for drilling target characterisation in Ossola Valley: International Continental Scientific Drilling Program (ICDP) project Drilling the Ivrea–Verbano zonE (DIVE) phase I. Sci Drill 33:219-236. https://doi.org/10.5194/sd-33-219-2024

2Plašienka D, Bielik M (2024) The Kolárovo gravity and magnetic anomaly body in a subcrop of the Danube Basin: A new geological interpretation. Geologica Carpathica 75(1): 49-59. https://doi.org/10.31577/GeolCarp.2024.03

3Plomerová J (2024) Patchwork structure of continental lithosphere captured in 3D body wave images of its anisotropic fabrics. J Geodyn 161, in press.https://doi.org/10.1016/j.jog.2024.102041

4Scarponi M, Kvapil J, Plomerová J, Solarino S, Hetényi G (2024) New constraints on the shear-wave velocity structure of the Ivrea geophysical body from seismic ambient noise tomography (Ivrea-Verbano Zone, Alps). Geophys J Int 236:1089-1105.https://doi.org/10.1093/gji/ggad470

5Schlömer A, Hetényi G, Plomerová J, Vecsey L, Bielik M, Bokelmann G, Csicsay K, Czuba W, Fojtíková L, Friederich W, Fuchs F, Grad M, Janik T, Kampfová Exnerová H, Kolínský P, Malinowski S, Meier T, Mendecki M, Papčo J, Środa P, Szűcs E, Süle B, Timkó M, Gyarmati A, Wéber Z, Wesztergom V, Žlebčíková H, AlpArray-PACASE Working Group (2024). The Pannonian-Carpathian-Alpine Seismic Experiment (PACASE): network description and implementation. Acta Geod Geophys 59:249-270. https://doi.org/10.1007/s40328-024-00439-w


Publications in 2023:

1Bezák V, Bielik M, Marko F, Zahorec P, Pašteka R, Vozár J, Papčo J (2023) Geological and tectonic interpretation of the new Bouguer gravity anomaly map of Slovakia. Geologica Carpathica 74:109–122, doi:10.31577/GeolCarp.2023.08

2Hetényi G, Subedi S (2023) A call to action for a comprehensive earthquake education policy in Nepal. Seismica 2(2):242. doi:10.26443/seismica.v2i2.242

3Michailos K, Hetényi G, Scarponi M, Stipčević J, Bianchi I, Bonatto L, Czuba W, Di Bona M, Govoni A, Hannemann K, Janik T, Kalmár D, Kind R, Link F, Lucente FP, Monna S, Montuori C, Mroczek S, Paul A, Piromallo C, Plomerová J, Rewers J, Salimbeni S, Tilmann F, Środa P,Vergne J, AlpArray-PACASE Working Group (2023) Moho depths beneath the European Alps: a homogeneously processed map and receiver functions database. Earth Syst Sci Data 15:2117-2138. doi:10.5194/essd-15-2117-2023

4Scarponi M, Kvapil J, Plomerová J, Solarino S, Hetényi G (2023 in press) New constraints on the shear-wave velocity structure of the Ivrea geophysical body from seismic ambient noise tomography (Ivrea-Verbano Zone, Alps). Geophys J Int, accepted ms. doi:10.1093/gji/ggad470



2022-TF5 - Assessing the relationships between lithospheric processes and seafloor topography at oceanic hotspots and divergent margins (LithoMar)


Publications in 2024:

1Panieri, G., et al. (2024). An Arctic natural oil seep investigated from space to the seafloor. Sci. Total Environ., 907, Article 167788. 10.1016/j.scitotenv.2023.167788

2Civile, D., et al. (2024). A Failed Rift in the Eastern Adventure Plateau (Sicilian Channel, Central Mediterranean). Journal of Marine Science and Engineering, 12(7):1142. 10.3390/jmse12071142

3Micallef, A., et al. (2024). Submarine volcanism in the Sicilian Channel revisited. Mar. Geol., 474, 107342.

4Rollwage, L., et al. (2024). Geomorphological evidence for volcano-tectonic deformation along the unstable western flank of Cumbre Vieja Volcano (La Palma). Geomorphology, 465. 10.1016/j.geomorph.2024.109401

5Preine, J., et al. (2024). Hazardous explosive eruptions of a recharging multi-cyclic island arc caldera. Nat. Geosci., 17, 323–331. 10.1038/s41561-024-01392-7


Publications in 2023:

1Karstens, J., Preine, J., Carey, S., Bell, K. L., Nomikou, P., Hübscher, C., Lampridou, D., Urlaub, M. (2023). Formation of undulating seafloor bedforms during the Minoan eruption and their implications for eruption dynamics and slope stability at Santorini. Earth and Planetary Science Letters. 10.1016/j.epsl.2023.118215

2Karstens, J., Crutchley, G.J., Hansteen, T.H., Preine, J., Carey, S., Elger, J., Kühn, M., Nomikou, P., Schmid, F., Dalla Valle, G. and Kelfoun, K., 2023. Cascading events during the 1650 tsunamigenic eruption of Kolumbo volcano. Nature Communications, 14(1), p.6606.

3Zegkinoglou Ν. Nikolaos, Mathur Ryan, Kilias P. Stephanos, Linda Godfrey, Vasilios Pletsas, Nomikou Paraskevi , Zaronikola Nina (2023). Boiling-induced extreme Cu isotope fractionation in sulfide minerals forming by active hydrothermal diffusers at the Aegean Kolumbo volcano: Evidence from in situ isotope analysis. Geology 2023; 51 (11): 1072–1076. doi: https://doi.org/10.1130/G51404.1.3

4Fallati L, Panieri G, Argentino C, Varzi AG, Bünz S and Savini A (2023) characterizing Håkon Mosby Mud Volcano (Barents Sea) cold seep systems by combining ROV-based acoustic data and underwater photogrammetry. Front. Mar. Sci. 10:1269197. doi: 10.3389/fmars.2023.1269197.

5Klein E, Hadre´ E, Krastel S and Urlaub M (2023) An evaluation of the General Bathymetric Chart of the Ocean in shoreline-crossing geomorphometric investigations of volcanic islands. Front. Mar. Sci. 10:1259262. doi: 10.3389/fmars.2023.1259262.



2021-TF6 - Sedimentary Basins


Publications in 2024:

1Nader, F.H., Matenco, L.C., Haq, B.U., 2024. Conceptualizing fluid-rock interaction diagenetic models with focus on tectonic settings. Earth-Sci. Rev. 258, 104951. https://doi.org/10.1016/j.earscirev.2024.104951

2Arts, J.P.B., Niemeijer, A.R., Drury, M.R., Willingshofer, E., Matenco, L.C., 2024. The frictional strength and stability of spatially heterogeneous fault gouges. Earth Planet. Sci. Lett. 628, 118586. https://doi.org/10.1016/j.epsl.2024.118586

3Nader, F.H., van Unen, M., Darnault, R., Rudkiewicz, J.L., Matenco, L., 2023. Coupled kinematic and thermal modelling of collisional orogens: Implications for subsurface geo-resources assessment in the external Dinarides. Global Planet. Change 223, 104090. https://doi.org/10.1016/j.gloplacha.2023.104090

4Nader, F.H., Matenco, L., Armitage, J.J., 2023. Understanding the coupled evolution of orogens, sedimentary basins and their fluid-rock interactions. Global Planet. Change 230, 104272. https://doi.org/10.1016/j.gloplacha.2023.104272

5Matenco, L., Beekman, F., 2023. Integrating the geological database of the subsurface of the Netherlands, for efficient visualization and interpretation. EPOS-NL data publication, Yoda Repository, Utrecht university. https://doi.org/10.24416/UU01-7M15N6


Publications in 2023:

1Nader, F.H., van Unen, M., Darnault, R., Rudkiewicz, J.L., Matenco, L., 2023. Coupled kinematic and thermal modelling of collisional orogens: Implications for subsurface geo-resources assessment in the external Dinarides. Global Planet. Change 223, 104090. https://doi.org/10.1016/j.gloplacha.2023.104090

2Nader, F.H., Matenco, L., Armitage, J.J., 2023. Understanding the coupled evolution of orogens, sedimentary basins and their fluid-rock interactions. Global Planet. Change 230, 104272. https://doi.org/10.1016/j.gloplacha.2023.104272

3Lange, T.P., Palcsu, L., Szakács, A., Kővágó, Á., Gelencsér, O., Gál, Á., Gyila, S., M. Tóth, T., Mațenco, L., Krézsek, C., Lenkey, L., Szabó, C., Kovács, I.J., 2023. The link between lithospheric scale deformations and deep fluid emanations: Inferences from the Southeastern Carpathians, Romania. Evolving Earth 1, 100013. https://doi.org/10.1016/j.eve.2023.100013

4Cloetingh, S., Sternai, P., Koptev, A., Ehlers, T.A., Gerya, T., Kovács, I., Oerlemans, J., Beekman, F., Lavallée, Y., Dingwell, D., Békési, E., Porkolàb, K., Tesauro, M., Lavecchia, A., Botsyun, S., Muller, V., Roure, F., Serpelloni, E., Matenco, L., Castelltort, S., Giovannelli, D., Brovarone, A.V., Malaspina, N., Coletti, G., Valla, P., Limberger, J., 2023. Coupled surface to deep Earth processes: Perspectives from TOPO-EUROPE with an emphasis on climate- and energy-related societal challenges. Global Planet. Change 226. https://doi.org/10.1016/j.gloplacha.2023.104140


Publications in 2022

1Matenco, L., Balázs, A., Nader, F.H., Haq, B.U., Fodor, L., 2022. Advances in the understanding of multi-scale and coupled evolution of orogens, sedimentary basins and the underlying lithosphere. Global Planet. Change 208, 103689.https://doi.org/10.1016/j.gloplacha.2021.103689



2022-TF7 - Bio-geodynamics of the lithosphere


Publications in 2024:

1Stern, R.J., Gerya, T.V. (2024) The importance of continents, oceans and plate tectonics for the evolution of complex life: implications for finding extraterrestrial civilizations. Scientific Reports 14 (1), 8552.

2Rogger, J., Judd, E.J., Mills, B.J.W., Godderis, Y, Gerya, T.V., Pellissier, L. (2024) Biogeographic climate sensitivity controls Earth system response to large igneous province carbon degassing. Science, 385 (6709), 661-666.

3Rogger, J., Mills, B., Gerya, T.V., Pellissier, L. (2024) Speed of thermal adaptation of the terrestrial vegetation alters Earth’s long-term climate. Science Advances, 10, eadj4408

4Xie, Y., Balazs, A., Gerya, T., Xiong, X. (2024) Uplift of the Tibetan Plateau driven by mantle delamination from the overriding plate. Nature Geoscience, 17 (7), 683-688.

5Zhang, K., Liao, J., Gerya, T. (2024) Onset of double subduction controls plate motion reorganization. Nature Communications, 15 (1), 1513.


Publications in 2023:

1Stern, R.J., Gerya, T.V. (2023) Co-evolution of life and plate tectonics: The biogeodynamic perspective on the Mesoproterozoic-Neoproterozoic transitions. In: Duarte, J. (Ed.) Dynamics of Plate Tectonics and Mantle Convection, Elsevier, pp. 295-319.

2Stern, R., Gerya, T., Tackley, P. (2023) A tectonic manifesto. Perspectives of Earth and Space Scientists, 4 (1), e2023CN000214.

3Cloetingh, S., Sternai, P., Koptev, A., Ehlers, T.A., Gerya, T., et al. (2023) Coupled surface to deep Earth processes: Perspectives from TOPO-EUROPE with an emphasis on climate-and energy-related societal challenges. Global and Planetary Change, 104140.

4Balazs, A., Gerya, T., May, D., Tari, G. (2023) Contrasting transform and passive margin subsidence history and heat flow evolution: Insights from 3D thermo-mechanical modelling. Geological Society, London, Special Publications, 524 (1), SP524-2021-94.

5Chen, Y., Chen, H., Liu, M., Gerya, T. (2023) Vertical tearing of subducting plates controlled by geometry and rheology of oceanic plates. Nature Communications 14 (1), 7931.



2021-TF8 - Lithospheric Heat Flow –Global Data Assessment Project


Publications in 2024:

1Verdoya, M., Beardsmore, G., Harris, R. (2024): Advances in heat flow studies and thermal structure of the lithosphere. Special Issue of Tectonophysics, 878, 230316, ISSN 0040-1951. https://doi.org/10.1016/j.tecto.2024.230316.

2Global Heat Flow Data Assessment Group et al. (2024): The Global Heat Flow Database: Release 2024. GFZ Data Services. https://doi.org/10.5880/fidgeo.2024.014

3Zhu, W.J., Liu, S.W., 2024. Heat flow and thermal structure of the South China Sea. Earth-Science Reviews, 261, 105028, doi:10.1016/j.earscirev.2024.105028

4Wang, Y.B., Liu, S.W., Chen, C.Q., et al.2024. Compilation of terrestrial heat flow in continental China (5th edition), Chinese Journal of Geophysics (in Chinese), 67(11):4233-4265, doi: 10.6038/cjg2024S0284.


Publications in 2022:

1Zhu Wenjing, Liu Shaowen, Huang Shaopeng. 2022. Heat flow in the Asian continent and surrounding areas. http://ijthfa.com/index.php/journal/article/view/77


Publications in 2021:

1Sven Fuchs et al. A new database structure for the IHFC Global Heat Flow Database, https://doi.org/10.31214/ijthfa.v4i1.62

2Raquel Negrete‐Aranda et al. Transport of Heat by Hydrothermal Circulation in a Young Rift Setting: Observations From the Auka and JaichMaa Ja'ag'Vent Field in the Pescadero Basin, Southern Gulf of California https://doi.org/10.1029/2021JB022300

3Sven Fuchs et al. The Global Heat Flow Database: Release 2021. https://doi.org/10.5880/fidgeo.2021.014



2023-TF1 - Formation, character, history, and behavior of Earth’s oldest lithospheres


Publications in 2024:

1Aldoud, A., Kusky T.M.*, Wang L. 2024. Is the Mesoarchean Mulgandinnah shear zone, Pilbara Craton, the world’s oldest arc-slicing transform fault? Geology 52(11): 801–806. https://doi.org/10.1130/G52360.1

2Zhong, Y. T., Stuwe, K., Kusky, T.M.*, Hauzenberger, C.A., Schorn, S., Wang, L. 2024. Inverted metamorphic gradient in the Zanhuang nappe/thrust system, north China indicates large-scale thrust stacking in an Archean Orogen. Earth and Planetary Science Letters 651: 119121. https://doi.org/10.1016/j.epsl.2024.119121

3Sotiriou, P., Polat, A., Kusky, T.M., Windley, B.F., Frei, R., and Yang, X.M., Geochemistry of Archean anorthosite-bearing layered intrusions, Earth Science Reviews, 249. 104654. https://doi.org/10.1016/j.earscirev.2023.104654

4Dong, Z.Y., Deng, H., Kusky, T.M, Polat, A., Peng, G.L., Zhang, H., Wang, L., and Wang, J.P., Growth of the Central Orogenic Belt, North China Craton through accretion of different Neoarchean arc terranes, Precambrian Research, 412, 107555. https://doi.org/10.1016/j.precamres.2024.107555

5Jiang, K., Wang, J.P., Kusky, T.M., Polat, A., Huang, B., Wang, L., Deng, H., and Peng, Y.Y., 2024. Genesis of Archean to Paleoproterozoic banded iron formations in the North China Craton: Geological and paleoenvironmental implications, Earth-Science Reviews 250, 104710 https://doi.org/10.1016/j.earscirev.2024.104710


Publications in 2023:

1Wang, Z.S., Zhang, J.F., Zong, K.Q., Kusky, T.M., Wang, Y.X., 2023. Plate Tectonics: The Stabilizer of Earth’s Habitability Journal of Earth Science. https://doi.org/10.1007/s12583-023-1864-9.

2Zhang, Z.J., Kusky, T.M., Yang, X.K., Cheng, Q.M., 2023. A paradigm shift in Precambrian research driven by big data. Precambrian Research. 399: 107235. https://doi.org/10.1016/j.precamres.2023.107235.

3Zhang, Zhen-Jie, Chen, Guo-Xiong, Kusky, T., Yang, J.M., and Cheng, Q.M., 2023, Lithospheric thickness records tectonic evolution by controlling crustal metamorphic and deformation conditions. Science Advances, v.9, Issue 50, DOI: 10.1126/sciadv.adi2134

4Xiao, L., Huang, J., Kusky, T.*, Head, J.W., Wang, J., Wang, L., Shi, Y.T, Yu, W.C., Huang, Q., Marine sedimentary rocks in Utopia Planitia: In situ evidence for an Hesperian ocean on Mars, National Science Review, https://doi.org/10.1093/nsr/nwad137

5Kuang, H., Morra, G., Yuen, D., Kusky, T., Jiang, S., Yao, H., and Qi, S., 2023, Metamorphism and the tectonic evolution of the Archean. Precambrian Research 397, Invited, 107195. https://doi.org/10.1016/j.precamres.2023.107195

6M. Vogt, W.H, Schwarz, A.K. Schmitt, J. Schmitt, M. Trieloff, T.M. Harrison, and E.A. Bell (2023) Graphitic inclusions in zircon from Early Phanerozoic S-type granite: Implications for the preservation of Hadean biosignatures. Geochem. Cosmochim. Acta 349, 23-40. https://doi.org/10.1016/j.gca.2023.03.022



2024-TF1 - Lithospheric evolution and tectonic carbon cycle


Publications in 2024:

1F.Y. Hu*, H.H. Jiang, B. Wang, Mihai N. Ducea, L. Gao, F.Y. Wu. Latitude-dependent oxygen fugacity in arc magmas. Nature Communications, 2024, 15: 6050. DOI: 10.1038/s41467-024-50337-6.

2X.X. Wang, L. Zhao*, J.F. Yang, Z.T. Guo*. Carbon Storage in the Forearc Produced by Buoyant Diapirs of Subducted Sediment. Geophysical Research Letters, 2024, 51: e2023GL107011. DOI: 10.1029/2023GL107011.

3S. Solarino, M.G. Malusà*, E. Eva, A. Paul, S. Guillot, S. Pondrelli, S. Salimbeni, L. Zhao. Seismic tomography reveals contrasting styles of subduction-channel and mantle-wedge exhumation controlled by upper plate divergent motion. Gondwana Research, 2024, 136: 169-182. DOI: 10.1016/j.gr.2024.08.016.

4Z.D. Shi, R.N. Mitchell, Y. Li*, B. Wan, L. Chen, P. Peng, L. Zhao, L.J. Liu, R.X. Zhu. Sluggish thermochemical basal mantle structures support their long-lived stability. Nature Communications, 2024,15:10000. DOI:10.1038/s41467-024-54416-6.



2021-CC1 TOPO-EUROPE


Publications in 2024:

1Garcia, A., et al., 2024. Sedimentation record of a complete glacial-interglacial cycle: the North Sea Mouth fan, Quaternary Science Reviews, 339.

2Koptev, A. and Cloetingh, S. 2024, Role of Large Igneous Provinces in continental break-up: varying from “Shirker” to “Producer”, Communications in Earth and Environment, Article 37.

3Kovacs, I., Porkolab, K., Cloetingh, S., Hetenyi, G. (Eds.), 2024. Crustal and mantle structures and processes in the Alpine-Carpathian-Pannonian system: recent advances. Acta Geodaetica et Geophysica,, v. 59.

4Lavecchia, A., et al., 2024. Fault (re)activation and fluid-induced seismicity: an example from de Val d’Agri intramontane basin (Southern Italy), Journal of Geophysical Research, 129.

5Malti. G., Koptev. A., Baville, P., Gerya, T., et al., 2024, Topography response to horizontal slab tearing and oblique continental collision: insights from 3D thermos-mechanical modeling, Journal of Geophysical Research, 129.


Publications in 2023:

1Mátyás Hencz, Tamás Biró, Károly Németh, Kristóf Porkoláb, István János Kovács, Tamás Spránitz, Sierd Cloetingh, Csaba Szabó and Márta Berkesi (2023), Tectonically-determined distribution of monogenetic volcanoes in a compressive tectonic regime: An example from the Pannonian continental back-arc system (Central Europe), ‘Journal of Volcanology and Geothermal Research’,Volume 444, 107940, ISSN 0377-0273

2Sierd Cloetingh, György Hetényi, Kristóf Prokoláb and István János Kovács (Eds.), “Crustal and upper mantle structures and processes in the Alpine-Carpathian-Pannonian system: recent advances”. Acta Geodaetica et Geophysica published by the Springer-Nature group, special issue in press

3Dániel Kalmár, Laura Petrescu, Josip Stipčević, Balázs Attila, István János Kovács, and AlpArray and PACASE Working Groups (2023), "Lithospheric Structure of the Circum‐Pannonian Region Imaged by S‐To‐P Receiver Functions." Geochemistry, Geophysics, Geosystems 24, no. 9: e2023GC010937.

4Thomas Lange, Laszlo Palcsu, Alexander Szakács, Ákos Kővágó, Orsolya Gelencsér, Ágnes Gál, Sándor Gyila, Tivadar M. Tóth, Liviu Mațenco, Csaba Krézsek and László Lenkey, (2023), The link between lithospheric scale deformations and deep fluid emanations: Inferences from the Southeastern Carpathians, Romania. Evolving Earth, 1, p.100013.

5Alexander Koptev and Sierd Cloetingh (2023), Role of Large Igneous Provinces in continental break-up revisited: from “Shirker” to “Producer”. Communications Earth and Environment, Springer-Nature Group in press

6Cloetingh, S., Sternai, P., Koptev A., Ehlers, T.A., Gerya T., Kovács, I., and TOPO-EUROPE team, 2023. Frontiers of research on coupled surface-deep Earth

processes: Perspectives from TOPO-EUROPE on climate and energy societal challenges. Global and Planetary Change, invited review paper


Publications in 2022:

1Liptai, N., Gráczer, Z., Szanyi, G., Cloetingh, S.A.P.L., Süle, B., Aradi, L. E., Falus, G., Bokelmann, G., Timkó, M., Timár, G., Szabó, C. & Kovács, I. J., 2022.Seismic anisotropy in the mantle of a tectonically inverted extensional basin: A shear-wave splitting and and mantle xenolith study on the western Carpathian-Pannonian region. Tectonophysics. 845, 229643.

2Cloetingh, S., Koptev, A., Lavecchia, A., Kovács, I. J. & Beekman, F., 2022. Fingerprinting secondary mantle plumes. Earth and Planetary Science Letters 597, 117819.


Publications in 2021:

1Kovács, I.J., Liptai, N., Koptev, A., CLOETINGH, S., Lange, T.P., Matenco, L., Szakács, A., Radulian, M., Berkesi, M., Patkó, L., Molnár, G., Novák, A., Wesztergom, V., Szabó, C., Francsik, T., 2021. The ‘pargasosphere’ hypothesis: Looking at global plate tectonics from a new perspective. Global and Planetary Change, 204, 103547.

2Koptev, A., Cloetingh, S., & Ehlers, T. A., 2021. Longevity of small-scale (“baby”) plumes and their role in lithospheric break-up. Geophysical Journal International.

3Cloetingh,S., Koptev,A., Kovacs, I. et al., 2021. Plume-induced sinking of intracontinental lithospheric mantle: An overlooked mechanism of subduction initiation ? Geochemistry, Geophysics, Geosystems.



2019-CC2 Lithospheric Seismicity and Tectonics in the Himalaya


Publications in 2024:

1Li, S., Schulte-Pelkum, V., Barnhardt, W., Chen, L., Karplus, M., Oncken, O. (2024), A weak, vertically stronger plate boundary in the India-Asia collision. Geophysical Research Letters, 51, https://doi.org/10.1029/2024GL110222.

2Karplus, M., Kaip, G. M., Harder, S. H., Veitch, S. A., Gonzalez, L. F.*, Nakata, N., Booth, A., Walter, J., Christoffersen, P. (2024), Signal characteristics of surface seismic explosive sources near the West Antarctic Ice Sheet divide. Journal of Glaciology, 1–11, https://doi.org/10.1017/jog.2024.41.

3Qin, L., Zhang, Z., Qiu, H., Nakata, N., Karplus, M. S., Kaip, G. M. (2024), High-resolution imaging of the firn layer near the West Antarctic Ice Sheet Divide camp. Geophysical Research Letters, 51, e2024GL108933, https://doi.org/10.1029/2024GL108933.

4Zhang, Z., Nakata, N., Karplus, M. S., Kaip, G. M., Qin, L., Li, Z., Shi, C., Chen, X. (2024), Seismic full-wavefield imaging of the West Antarctic Ice Sheet's interior near the ice flow divide. Earth and Planetary Science Letters, 636, 118701, https://doi.org/10.1016/j.epsl.2024.118701.

5Faith, J.*, Karplus, M., Veitch, S., Doser, D., Savvaidis, A. (2024), The Pecos Array: A Temporary Nodal Seismic Experiment in the Pecos, Texas Region of the Delaware Basin. Seismological Research Letters, 95, 1, 544-555, https://doi.org/10.1785/0220230108.


Publications in 2022:

1Cortez, S. A., Velasco, A. A., Karplus, M., Pant, M., Gonzalez-Huizar, H., Campos-Perez, X., Husker, A., Dena, O., (2022). Ground motionanalysis in Juchitan de Zaragosa, Oaxaca following the 2017 Tehuantepec, Mexico (M8.2) earthquake. Bulletin of the Seismological Society ofAmerica.

2Li, S., Schulte-Pelkum, V., Barnhart, W., Karplus, M., Mechanical anisotropy of the Main Himalayan Thrust from geodetic modeling and seismic imaging. Submitted to J. Geophys. Res.: Solid Earth.


Publications in 2021:

1Karplus, M., NMSU Nepalese Students Association Conference, "Earthquakes in the Himalaya," NMSU Nepalese Students Association, Online. (April 17, 2021).

2Karplus, M., University of Memphis CERI Seminar, "Structure of the Main Himalayan Thrust in Nepal from aftershock recordings following the M7.8 2015 Gorkha earthquake," University of Memphis, Online. (April 2, 2021).



2021-CC3 Anatolian Tectonics (ANATEC)


Publications in 2024:

1Chen, J., Liu, C., Dal Zilio, L., Cao, J., Wang, H., Yang, G., Göğüş, O.H., et al. (2024). Decoding stress patterns of the 2023 Türkiye-Syria earthquake doublet, Journal of Geophysical Research: Solid Earth, 129, e2024JB029213. https://doi.org/10. 1029/2024JB029213

2Andersen**, J., Gögüş, O.H., Pysklywec, R.N., Şengül Uluocak, E., Santimano, T., Multistage lithospheric drips control active basin formation within an uplifting orogenic plateau, Nature communications. https://doi.org/10.1038/s41467-024-52126-7

3Gün**., E., Pysklywec, R.N., Topuz, G., Göğüş, O.H., Heron, P., Syn-Drift plate tectonics (in review) Geophysical Research Letters. 51, e2023GL105452. https://doi.org/10.1029/2023GL105452 .


Publications in 2021:

1Şengül Uluocak, E., Göğüş, O. H., Pysklywec, R. N., Chen, B. 2021. Geodynamics of East Anatolia-Caucasus domain: Inferences from 3D thermo- mechanical models, residual topography, and admittance function analyses. Tectonics, 40, e2021TC007031. https://doi.org/10.1029/2021TC007031

2Racano, S., Schildgen, T.F., Cosentino, D., Miller, S.R., 2021. Temporal and spatial variations in rock uplift from river - pro le inversions at the central Anatolian plateau southern margin. J. Geophys. Res.: Earth Surf. 126 https://doi.org/10.1029/2020JF006027

3Gün, E., Pysklywec, R.N., Göğüş, O.H., Topuz, G., 2021. Pre-collisional extension of microcontinental terranes by a subduction pulley. Nature Geoscience14 (6), 443–450. https://doi.org/10.1038/s41561-021-00746-9



2021-CC4 Global Geo Transects (GGT)


Publications in 2024:

1Li, J.H., Dong, S.W., Zhao, G.C., Peter A. Cawood, Stephen T. Johnston, Zhang, J., Xin, Y.J., Wang, J.M., 2024. Cretaceous coastal mountain building and potential impacts on climate change in East Asia. Science Advances, 10, eads0587, DOI:10.1126/sciadv.ads0587.

2Shi, W., Dong, S.W., Zhang, Y.Q. 2024. Jurassic contractional deformation in the central–western North China craton in response to multi-plate convergence in the East Asia. Geosystems and Geoenvironment, 3.https://doi.org/10.1016/j.geogeo.2022.100099.

3SHI Wei, DONG Shuwen, HU Jianmin. Neotectonics around the Ordos Block, North China. Acta Geologica Sinica (English Edition), 2024, 98(supp. 1): 62-66.


Publications in 2022:

1Zhang, Y., Dong, S*., Wang, H., Feng, M., Thybo, H., Li, J., et al. (2022). Coupled lithospheric deformation in the Qinling orogen, central China: Insights from seismic reflection and surface-wave tomography. Geophysical Research Letters, 49, e2022GL097760. https://doi. org/10.1029/2022GL097760

2S.H. Huang , H. Thybo,* , S.W. Dong,* , I.M. Artemieva , R.Z. He , B.F. Han, Q. Zhou, W. Shi, 2022, Upper mantle seismic structure in the Ordos Block, China, Journal of Geodynamics,151 (2022) 101921

3Zhiheng Ren, Shuwen Dong*, Yueqiao Zhang, Xuanhua Chen, Wei Shi, and Yu

Zhang 2022, Middle Jurassic intracontinental evolution of East Asia: Insights from the Tianshifu-Dongyingfang basin of the Liaodong Peninsula, NE China, GSA Bulletin, dio:10.1130/B36373.1.



2021-CC5 Lithosphere of East Antarctica


Publications in 2024:

1Fu, L., Guo, J., Shen, W., Wang, X., Liu, X., Chen, X., & Hu, X. (2024). Geophysical evidence of the collisional suture zone in the Prydz Bay, East Antarctica. Geophysical Research Letters, 51, e2023GL106229. https://doi.org/10.1029/2023GL106229

2Stal, T., Halpin, J. A., Goodge, J. W., & Reading, A. M. (2024). Geology matters for Antarctic geothermal heat. Geophysical Research Letters, 51, e2024GL110098. https://doi.org/10.1029/2024GL110098

3King, M. A., & Christoffersen, P. (2024). Major modes of climate variability dominate nonlinear Antarctic ice-sheet elevation changes 2002–2020. Geophysical Research Letters, 51, e2024GL108844. https://doi.org/10.1029/2024GL108844


Publications in 2023:

1Cox, S.C., Smith Lyttle, B., Elkind, S. et al. A continent-wide detailed geological map dataset of Antarctica. Sci Data 10, 250 (2023). https://doi.org/10.1038/s41597-023-02152-9

2King, M.A., Lyu, K. & Zhang, X. Climate variability a key driver of recent Antarctic ice-mass change. Nat. Geosci. 16, 1128–1135 (2023). https://doi.org/10.1038/s41561-023-01317-w

3Sebastian N, Tkalčić H, Sippl C, Kim S, Reading AM, Chen Y and Fontaine FR (2023), The crust-mantle transition beneath Northeast China from P–wave receiver functions. Front. Earth Sci. 11:1144819. doi: 10.3389/feart.2023.1144819


Publications in 2022:

1Afonso, J.C., Ben-Mansour, W., O’Reilly, S.Y. et al. Thermochemical structure and evolution of cratonic lithosphere in central and southern Africa. Nat. Geosci. 15, 405–410 (2022). https://doi.org/10.1038/s41561-022-00929-y