Carrie Yang   Associate professor

杨晓红,东北大学冶金学院副教授,博士生导师。2014年毕业于澳大利亚新南威尔士大学材料科学与工程学院获工学博士学位,2015年5月回国任职于东北大学冶金学院,在冶金工程博士后流动站从事博士后研究工作,2017年起任东北大学冶金学院讲师、副教授。主要研究方向为光电催化能量转换技术,高级氧化技术与工艺,固废资源的提纯与回收等。作为项目负责人先后主持中国博士后基金,东北大学博士后基金,青年教师科研创新基金,中国自...Detials

Synthesis of TiO 2 -Reduced Graphene Oxide Nanocomposites Offering Highly Enhanced Photocatalytic Activity

Release time:2024-03-18  Hits:

  • Journal:Journal of Nanoscience and Nanotechnology
  • Volume:19
  • Abstract:Photogenerated electron–hole recombination significantly restricts the catalytic efficiency of titanium dioxide (TiO2). Various approaches have been developed to overcome this problem, yet it remains challenging. Recently, graphene modification of TiO2 has been considered as an effective alternative to prevent electron–hole recombination and consequently enhance the photocatalytic performance of TiO2. This study reports an efficient but simple hydrothermal method utilizing titanium (IV) butoxide (TBT) and graphene oxide (GO) to prepare TiO2-reduced graphene oxide (RGO) nanocomposites under mild reaction conditions. This method possesses several advantageous features, including no requirement of high temperature for TiO2 crystallization and a one-step hydrothermal reaction for mild reduction of GO without a reducing agent, which consequently makes the production of TiO2-RGO nanocomposites possible in a green and an efficient synthetic route. Moreover, the as-synthesized nanocomposites were characterized by numerous advanced techniques (SEM, TEM, BET, XRD, XPS, and UV-vis spectroscopy). In particular, the photocatalytic activities of the synthesized TiO2-RGO nanocomposites were evaluated by degrading the organic molecules (methylene blue, MB), and it was found that the photocatalytic activity of TiO2-RGO nanocomposites is ~4.5 times higher compared to that of pure TiO2. These findings would be useful for designing reduced graphene oxide-metal oxide hybrids with desirable functionalities in various applications for energy storage devices and environmental remediation.
  • Key Words:Graphene; Hydrothermal; Nanocomposites; Photocatalysis; Titanium Dioxide
  • Document Code:DOI:10.1166/jnn.2019.16624
  • Translation or Not:no