董辉

教授

教授 博士生导师 硕士生导师

电子邮箱:

入职时间:1992-08-01

职务:热能工程系主任

学历:博士研究生毕业

办公地点:知行楼622

在职信息:在职

主要任职:九三学社东北大学委员会主任委员

其他任职:中国金属学会能源与热工分会秘书长,辽宁省流程工业节能与绿色低碳技术工程研究中心主任,辽宁省钒钛资源综合利用专业技术创新中心主任,辽宁省机械工程学会环境工程分会副理事长

通讯/办公地址:

办公室电话:

移动电话:

邮箱:

个人简介

董辉,1969年生,东北大学冶金学院/国家环境保护生态工业重点实验室教授、博士生导师,辽宁省首批“兴辽英才计划”科技创新领军人才,东北大学能源与动力工程国家一流本科建设点负责人。

长期致力于颗粒床层流动传热、核泵传热、冶金过程余热回收、冶金焙烧/煅烧炉窑热工行为等关键理论和技术研究。主持国家863计划、国家科技支撑、国家自然科学基金联合基金及面上项目、生态环境部计划等项目,包括:863目标导向类项目“烧结过程余热资源分级回收与提及利用示范工程”、国家科技支撑计划项目“辽西地区新型钒钛磁铁矿资源高效综合利用技术及示范”、国家自然科学基金联合基金项目“轴封型核主泵复杂工况下冷却机理及增效设计制造方法研究”、国家自然科学基金面上项目“烧结余热罐式回收系统的基础研究”等2项。制订了《钒工业污染物排放标准(GB26452-2011)》、《辽宁省钢铁工业大气污染物排放标准》。获得或申请国家发明专利20余项,主编规划教材2部,专著1部;发表SCIE检索论文140余篇。先后两次荣获得辽宁省科技进步二等奖(总排名分别为第一和第二)。


代表性科研项目

序号 项目(课题/任务)名称 立项编号 项目来源 计划名称
1 轴封型核主泵复杂工况下冷却机理及增效设计制造方法研究 U24A20142 国家基金委 联合基金项目
2 烧结过程余热资源分级回收与提及利用示范工程 2009AA05Z215 国家科技部 国家863计划项目
3 辽西地区新型钒钛磁铁矿资源高效综合利用技术及示范 2015BAB18B00 国家科技部 国家科技支撑计划项目
4 烧结余热回收竖罐内气固动量传输与热量传递规律及其耦合机理 51974087 国家基金委 国家自然科学基金项目
5 烧结矿余热回收竖罐内气固动量传输机理及颗粒运动规律研究 51904074 国家基金委 国家自然科学基金项目
6 IGCC/CCPP国产成套化装备热工工艺优化 2017021800103 国家工信部 绿色制造集成项目


    代表性论文:

1.          Numerical evaluation and parameter optimization of bischofite pyrolysis: A new approach to solid waste treatment. International Communications in Heat and Mass Transfer, 2024, 152, 107304.

2.          Numerical study of gas–solid counterflow heat transfer in sinter vertical cooling furnace based on energy and exergy analysis. Applied Thermal Engineering, 2024, 244, 122773.

3.          Optimization of a pyrolysis furnace using multi-jet arrays through numerical and machine learning techniques. International Journal of Heat and Mass Transfer, 2023, 214, 124426.

4.          CFD-DPM data-driven GWO-SVR for fast prediction of nitrate decomposition in blast furnaces with nozzle arrangement optimization. Process Safety and Environmental Protection, 2023, 176, 438–449.

5.          Experimental investigation of flow and exergy transfer characteristics in the air-cooled randomly packed particle bed based on second law analysis. International Journal of Heat and Mass Transfer, 2022, 185, 122360.

6.          Analysis of carbon footprint and reduction approach of magnesia production in China. Journal of Cleaner Production, 2022, 334, 130194.

7.          Numerical investigation of the air-particles heat transfer characteristics of moving bed - effect of particle size distribution. International Journal of Heat and Mass Transfer, 2022, 182, 122036.

8.          Study on DEM parameter calibration and wear characteristics of vanadium-titanium magnetite pellets. Powder Technology, 2021, 393, 427–440.

9.          Study on the characteristics of pellet movement under different roasting temperature in hopper. Powder Technology, 2021, 386, 286–297.

10.      Dynamic exergy analysis of a novel LNG cold energy utilization system combined with cold, heat and power. Energy, 2020, 212, 118649.

11.      Effect of operating parameters on gas-solid exergy transfer performance in sinter annular cooler. Applied Thermal Engineering, 2020, 181, 115928.

12.      DEM study on the effects of pellet characteristics on particle flow in rectangular hopper. Powder Technology, 2020, 373, 476–487.

13.      Exergy analysis and parameter optimization of sinter cooling process in vertical moving bed for waste heat recovery. Applied Thermal Engineering, 2020, 175, 115370.

14.      A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry. Energy, 2019, 187, 115963.

15.      Thermal analysis of sinter vertical cooler based on waste heat recovery. Applied Thermal Engineering, 2019, 157, 113708.

16.      A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of the Total Environment, 2019, 670, 110–121.

17.      Effect of gas inlet parameters on exergy transfer performance of sinter cooling process in vertical moving bed. Applied Thermal Engineering, 2019, 152, 126–134.

18.      Experimental investigation of volumetric heat transfer coefficient in vertical moving-bed for sinter waste heat recovery. Applied Thermal Engineering, 2019, 151, 335–343.

19.      Frictional pressure drop characteristics of air flow through sinter bed layer in vertical tank. Powder Technology, 2019, 344, 177–182.

20.      Experimental investigation of volumetric exergy transfer coefficient in vertical moving bed for sinter waste heat recovery. Energy, 2019, 167, 428–439.

等。

 

   专著:《烧结余热高效回收理论及应用》. 2020,北京:科学出版社。