Yu-Jie Tan, Cheng-Gang Shao,and Zhong-Kun Hu
MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan 430074, People’s Republic of China
(Received 4 January 2016; published 20 July 2016)
The finite-speed-of-light (FSL) effect is a systematic error in atom gravimeters arising from the time delay due to the propagation of the light. It includes the frequency-chirp-independent part and the frequency-chirp-dependent part, which were not considered completely. The FSL effect in atom gravimeters is different from that in corner-cube absolute gravimeters. In the past, this effect has been widely studied in corner-cube absolute gravimeters, whereas little has been discussed about and done with atom gravimeters. In this paper, we mainly propose a complete analytical study based on a coordinate transformation and on a “perturbation” approach to estimate this effect in an atom gravimeter. This also offers the potential to calculate the general relativistic effects in atom gravimeters. In addition, a comparison with a crude “average-path” analysis is given for a particular case of the FSL effect in atom gravimeters.
DOI: 10.1103/PhysRevA.94.013612