一、课程简介与课程目标
数字建造是现代信息技术与现代建造技术深度融合的产物。数字建造不仅仅是新的建造方式,更是新的建造体系。结合当前我国工业建造背景,《数字建造》课程将系统论述数字建造的产生背景、发展过程、概念内涵、支撑技术和产业变革趋势,让学生对数字建造有一个全面而深入的了解。课程内容涵盖建筑数字化设计、工程结构参数化设计、工程数字化施工、建筑机器人、建筑结构安全监测与智能评估、建筑工程数字化运维服务等多个方面,对数字建造在工程设计、施工、运维全过程中的相关技术与管理问题进行全面地讲授,帮助学生了解学习数字技术在工程建造实践中的广泛应用。通过学习数字建造的理论方法和技术框架,学生可以培养辩证思维能力,提升解决复杂工程问题的能力。建设本在线课程,有助于学生自主地、有针对性地学习,通过网络平台,教学资源可以得到更广泛的共享与传播,教学内容可以得到及时补充更新,最新的数字建造技术发展和行业趋势得以为学生所了解掌握,保证时效性和前瞻性的同时,还能提升学生对数字建造行业的发展信心。这样一套在线课程的建设,对于培养具有创新精神和实践能力的高素质人才,推动我国建筑行业的数字化、智能化、绿色化发展,具有重要的意义。同时,课程内容也紧密结合了国家需求战略和建筑业的升级转型,让学生了解到信息技术、人工智能技术、物联网、大数据等在数字建造中的应用,提升学生对我国数字建造技术及应用发展的认同感和自豪感。
本课程将深入探讨数字建造的内涵与框架体系,全方位覆盖人工智能及其在土木工程中的应用,包括建筑工业化、大数据驱动的工程决策、工程软件与数字化设计、智慧交通与道路优化、建筑产业互联网等多个关键领域,课程还将融合现代项目管理最新理论,以及结合我国工程项目管理制度的改革与实践,通过高校科学研究与企业创新实践多重视角,紧跟研究前沿和行业最佳实践脚步,全方位帮助学生理解并掌握数字建造在工程设计、施工、运维即整个生命周期中的关键技术与管理策略,帮助学生熟练运用所学知识,在工程实践中解决实际问题,成为具有创新能力和国际视野的数字建造领域专业人才。
二、课程信息
授课教师:马灵教授
日程:第2~9周,每周二、四7~8节,C12-N302
成绩分配:平时成绩40%(课程考勤20%+小组汇报20%)+结课报告60%
推荐教材
《数字建造导论》,丁烈云,北京,中国建筑工业出版社,2019.12
《工程项目管理信息分析》,骆汉宾,中国建筑工业出版社,2021.12
《数字建造项目管理概论》,骆汉宾,机械工业出版社,2021.01
小组项目
(1)学生需要根据课程研讨主题成立学习小组(每5人一组,其中包括一个小组负责人),共同完成课程项目。每个小组负责人需在指定日期前向助教提交小组成员名单。
(2)每组同学自主查找国内外相关案例或前沿研究,解析对应技术应用过程和效果,制作PPT并在课堂分享,汇报内容包括但不限于项目背景、关键技术及原理、实施效果分析、创新点及对自己的研究启示等。
(3)课程结束后,每个小组需要提交一份课程结课报告,报告内容包括但不仅限于引言、研究背景、研究现状、关键技术及原理、技术实施效果分析、领域趋势分析、研究创新点、个人启示总结、参考文献、附录、小组分工等。结课报告任务应公平分配,强调独立性和协作性,小组分工部分务必撰写明确。
三、课程时间安排
周数 |
时间 |
教学主题 |
2 |
2024年3月5日 |
数字建造课程绪论 |
2 |
2024年3月7日 |
数字建造的应用 |
3 |
2024年3月12日 |
数字工地 |
3 |
2024年3月14日 |
数字工地 |
4 |
2024年3月19日 |
人工智能 |
4 |
2024年3月21日 |
工程大数据 |
5 |
2024年3月26日 |
数字化设计 |
5 |
2024年3月28日 |
生物建造 |
6 |
2024年4月2日 |
工程物联网 |
7 |
2024年4月9日 |
基础设施智慧运维 |
7 |
2024年4月11日 |
智慧物流 |
8 |
2024年4月16日 |
建造平台化 |
8 |
2024年4月18日 |
建造平台化 |
9 |
2024年4月23日 |
数字化道路规划设计 |
9 |
2024年4月25日 |
课程小组汇报 |
考核方式
(1)平时成绩(40%)
①课程考勤(20%)
要求各位同学不得无故缺课,如需请假须在课前持经批准的请假条向助教请假,无故旷课将扣除该次课程的考勤分数;
②小组汇报(20%)
要求每组同学根据课程研讨主题,自主查找国内外相关案例或前沿研究,解析对应技术应用过程和效果,制作PPT并分享,汇报内容包括但不限于项目背景、关键技术及原理、实施效果分析、创新点及对自己的研究启示等;
2024年4月25日课堂上进行小组汇报,汇报时间每组5分钟;请各组以组为单位在汇报前一天将PPT提交至助教邮箱qiufengchn@hust.edu.cn。
(2)结课报告(60%)
提交材料:每组学生共同完成并提交 5000 字左右课程报告,报告内容包括但不仅限于引言、研究现状、趋势分析、总结、参考文献、附录等;
提交方式:提交电子版文档至助教邮箱qiufengchn@hust.edu.cn。
提交时间:2024年5月25日截止,若无特殊原因,延迟一周以内提交扣除20%的分数,超过一周则按未提交处理。
四、文献查询网站
1、中文
知网:https://www.cnki.net/
万方:https://g.wanfangdata.com.cn/index.html
维普:http://lib.cqvip.com/
CSSCI:http://cssci.nju.edu.cn/
华中科技大学BIM工程中心:/hust/mu_bim/index.htm
2、英文
ScienceDirect:https://www.sciencedirect.com/
EI:https://www.engineeringvillage.com/search/quick.url
Wiley:https://onlinelibrary.wiley.com/
Springer:https://link.springer.com/
Google scholar:https://ac.scmor.com/
五、附件
PPT
01.数字建造导论
02.基于模型定义的工程产品
03.工程物联网
04.制造-建造生产模式
05.建造服务化
06.建造平台化
报告模板word
六、推荐阅读
1、数字建造框架体系
[1] Xu M., Nie X., Li H., et al. Smart construction sites: A promising approach to improving on-site HSE management performance[J]. Journal of Building Engineering, 2022, 49.
[2] Rossi A., Vila Y., Lusiani F., et al. Embedded smart sensor device in construction site machinery [J]. Computers in Industry, 2019, 108:12–20.
[3] Bucchiarone A., De Sanctis M, Hevesi P, et al. Smart construction: Remote and adaptable management of construction sites through IoT [J]. IEEE Internet of Things Magazine, 2019, 2(3): 38–45.
[4] Kochovski P., Stankovski V. Supporting smart construction with dependable edge computing infrastructures and applications [J]. Automation in Construction, 2018, 85:182–192.
[5] Edirisinghe R. Digital skin of the construction site: Smart sensor technologies towards the future smart construction site [J]. Engineering, Construction and Architectural Management, 2019, 26(2): 184–223.
[6] Ding L., Fang W., Luo H., et al. A deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memory [J]. Automation in Construction, 2018, 86: 118–124.
[7] Zhou H., Wang H., Zeng W. Smart construction site in mega construction projects: A case study on island tunneling project of Hong Kong-Zhuhai-Macao Bridge [J]. Frontiers of Engineering Management, 2018, 5(1): 78–87.
[8] 丁烈云. 智能建造创新型工程科技人才培养的思考 [J]. 高等工程教育研究, 2019 (5): 1–4, 29.
[9] 毛超, 彭窑胭. 智能建造的理论框架与核心逻辑构建 [J]. 工程管理学报, 2020, 34(5):1–6.
[10] 陈珂, 陈强健, 杜鹏. 国产BIM建模软件发展的思考:基于PCA的影响因素研究[J/OL]. 土木建筑工程信息技术, 2021: 1–9 [2021-03-22].
2、工程信息化模型
[1] Patlakas P., Livingstone A., Hairstans R., and Neighbour G., “Automatic code compliance with multi-dimensional data fitting in a BIM context,” Adv. Eng. Informatics, vol. 38, no. June, pp. 216–231, 2018.
[2] Jang S. and Lee G., “Impact of organizational factors on delays in bim-based coordination from a decision-making view: A case study,” J. Civ. Eng. Manag., vol. 24, no. 1, pp. 19–30, 2018.
[3] Jiang S., Wang N., and Wu J., “Combining BIM and Ontology to Facilitate Intelligent Green Building Evaluation,” J. Comput. Civ. Eng., vol. 32, no. 5, pp. 1–15, 2018.
[4] Klerk R., Duarte A. M., Medeiros D. P., Duarte J. P., Jorge J. and Lopes D. S., “Usability studies on building early stage architectural models in virtual reality,” Autom. Constr., vol. 103, no. July 2016, pp. 104–116, 2019.
[5] Mehrbod S., Staub-French S., Mahyar N., and Tory M., “Characterizing interactions with BIM tools and artifacts in building design coordination meetings,” Autom. Constr., vol. 98, no. October 2018, pp. 195–213, 2019.
[6] Wolfartsberger J., “Analyzing the potential of Virtual Reality for engineering design review,” Autom. Constr., vol. 104, no. November 2018, pp. 27–37, 2019.
[7] Ghannad P., Lee Y. C., Dimyadi J., and Solihin W., “Automated BIM data validation integrating open-standard schema with visual programming language,” Adv. Eng. Informatics, vol. 40, no. January, pp. 14–28, 2019.
[8] Gui N., Wang C., Qiu Z., Gui W., and Deconinck G., “IFC-Based Partial Data Model Retrieval for Distributed Collaborative Design,” J. Comput. Civ. Eng., vol. 33, no. 3, pp. 1–10, 2019.
[9] Hu Y. and Castro-Lacouture D., “Clash Relevance Prediction Based on Machine Learning,” J. Comput. Civ. Eng., vol. 33, no. 2, 2019.
[10] Lai H., Deng X., and Chang T. Y. P., “BIM-Based Platform for Collaborative Building Design and Project Management,” J. Comput. Civ. Eng., vol. 33, no. 3, pp. 1–15, 2019.
[11] Wu W., Hartless J., Tesei A., Gunji V., Ayer S., and London J., “Design Assessment in Virtual and Mixed Reality Environments: Comparison of Novices and Experts,” J. Constr. Eng. Manag., vol. 145, no. 9, 2019.
[12] Rigger E., Vosgien T., Shea K., and Stankovic T., “A top-down method for the derivation of metrics for the assessment of design automation potential,” J. Eng. Des., vol. 31, no. 2, pp. 69–99, 2020.
[13] Unified C. and Plan D., “Visualize Smart Growth development with Parametric BIM A case study of Columbia Unified Development Plan.”
[14] Lu H., Park D., Liu C., Ji G., and Tong Z., Computer-Aided Architectural Design “Hello, Culture”: 18th International Conference, CAAD Futures 2019, Selected Papers, vol. 1028. Springer Singapore, 2019.
[15] Ying H. and Lee S., “Automatic Detection of Geometric Errors in Space Boundaries of IFC-BIM Models Using Monte Carlo Ray Tracing Approach,” J. Comput. Civ. Eng., vol. 34, no. 2, pp. 1–20, 2020.
[16] 李晶. 基于 MBD 的智能化工艺设计技术研究[D].南京航空航天大学,2018.
[17] 尹旭东. 基于模型定义的知识重用及其在水工配筋上的应用实现[D].电子科 技大学, 2014.
[18] 谢坤峰. 基于模型定义的 CAD 信息提取和重用方法的研究[D].合肥工业大学, 2017.
[19] 辛宏妍. 面向数字建造的工程设计组织模式研究[D].华中科技大学, 2017.
[20] 刘立肖. 迁移建筑物的参数化建模和有限元分析[D].天津大学, 2009.
3、土木工程人工智能
[1] 刘禹, 魏庆来. 人工智能与人机博弈[M]. 清华大学出版社, 2020
[2] 邱锡鹏. 神经网络与深度学习[M]. 机械工业出版社, 2020.
[3] Bishop C., & Nasrabadi N. Pattern recognition and machine learning. New York: springer, vol.4, no.4, p.7382020.
[4] Wu D., Peng R., & Mendel M.. Type-1 and Interval Type-2 Fuzzy Systems [AI-eXplained]. IEEE Computational Intelligence Magazine, 18(1), 81-83, 2023.
[5] Wu D., & Mendel J. Recommendations on designing practical interval type-2 fuzzy systems. Engineering Applications of Artificial Intelligence, 85, 182-193, 2019.
[6] Xia K., Duch W., Sun Y., Xu K., Fang W., Luo H., ... & Wu D. Privacy-preserving brain–computer interfaces: A systematic review. IEEE Transactions on Computational Social Systems, 2022.
[7] Fang W., Wu D., Love P. E., Ding L., & Luo H. Physiological computing for occupational health and safety in construction: Review, challenges and implications for future research. Advanced Engineering Informatics, 54, 101729, 2022.
[8] Chen C., Huang J., Wu D., & Tu, X. Interval type-2 fuzzy disturbance observer-based T–S fuzzy control for a pneumatic flexible joint. IEEE Transactions on Industrial Electronics, 69(6), 5962-5972, 2022.
[9] Fang W., Love P. E., Luo H., & Ding, L. Computer vision for behaviour-based safety in construction: A review and future directions. Advanced Engineering Informatics, 43, 100980, 2020.
[10] Fang W., Ding L., Love P. E., Luo H., Li, H., Pena-Mora, F., ... & Zhou, C. Computer vision applications in construction safety assurance. Automation in Construction, 110, 103013, 2020.
4、大数据驱动的工程决策
[1] Aheleroff S., Xu X., Lu Y., Aristizabal M., Velásquez, J. P., Joa, B., & Valencia, Y. IoT-enabled smart appliances under industry 4.0: A case study. Advanced Engineering Informatics, 43, 101043, 2020.
[2] BataglinF., VianaD., Formoso C., & Bulhões I. Model for planning and controlling the delivery and assembly of engineer-to-order prefabricated building systems: exploring synergies between Lean and BIM. Canadian Journal of Civil Engineering, 47(2), 165-177, 2022.
[3] Cui Y., Li S., Liu C., & Sun N. Creation and diversified applications of plane module libraries for prefabricated houses based on BIM. Sustainability, 12(2), 453, 2020.
[4] Marcinkowski R., & Banach M. Computer Aided Assembly of Buildings. Buildings, 10(2), 28, 2020.
[5] Wang, Z., Wang, T., Hu, H., Gong, J., Ren, X., & Xiao, Q. Blockchainbased framework for improving supply chain traceability and information sharing in precast construction. Automation in Construction, 111, 103063, 2020.
[6] Xu, Z., Abualdenien, J., Liu, H., & Kang, R. An IDM-Based Approach for Information Requirement in Prefabricated Construction. Advances in Civil Engineering, 2020, 8946530, 2020.
[7] Bortolini, R., Formoso, C. T., & Viana, D. D. Site logistics planning and control for engineer-to-order prefabricated building systems using BIM 4D modeling. Automation in Construction, 98, 248-264, 2019.
[8] Li, X., Shen, G. Q., Wu, P., & Yue, T. Integrating building information modeling and prefabrication housing production. Automation in Construction, 100, 46-60, 2019.
[9] Li, X., Shen, G. Q., Wu, P., Xue, F., Chi, H. L., & Li, C. Z. Developing a conceptual framework of smart work packaging for constraints management in prefabrication housing production. Advanced Engineering Informatics, 42, 100938, 2019.
[10] 熊超华. 基于社会网络的地铁施工班组行为安全研究[D]. 华中科技大学, 2020.
[11] 周诚. 地铁盾构施工地表变形时空演化规律与预警研究[D]. 华中科技大学, 2011.
5、工程物联网
[1] Mariusz, P. The Quality of Construction Services Provided in the Long Term During the Operation and Use of a Building Object[J]. Conference Quality Production Improvement – CQPI, 2(1), 2020,.
[2] Maqsoom, A., Ashraf. H., Arif, I., Umer M., Nazir T., Najam M., Shafi K. Internationalization of Construction Service Corporations: Impact of Size and International Experience[J]. IEEE Access, 8, 2020.
[3] Alexander, G., Nikolay Kazantsev,Julia Bilinkis (Stavenko). An Approach to Knowledge Management in Construction Service – Oriented Architecture[J]. Procedia Computer Science,96, 2016.
[4] Sun Yan Bin,Fu Han Liang. A System Model for Assessment on Creation Capabilities of Construction Service Enterprises in China[J]. Applied Mechanics and Materials, 457-458, 2013.
[5] 陈维亚,姜雨田,彭刚等. 基于空天地一体化监测的道路土方智能化施工服务平台[J].土木工程与管理学报,2021,38(01):112-119.
[6] 杨振,郭小凡.“互联网+”背景下建筑劳务发展研究[J].创新创业理论研究与实践,2020,3(10):124-125+131.
[7] 刘典,王红卫,周洪涛.工程建造服务及其建模[J].工程管理学报,2017,31(06):158-164.
[8] 武光霞. 基于知识价值链的机场全过程进度管理咨询研究[D].华中科技大学, 2021.
[9] L. Hang, E. Choi, D.H. Kim, A novel EMR integrity management based on a medical blockchain platform in hospital, Electron. 8, 2019.
[10] J.C.P. Cheng, K.H. Law, H. Bjornsson, A. Jones, R. Sriram, A service oriented framework for construction supply chain integration, Autom. Constr. 19, 245–260, 2010.
[11] T.H. Shin, S. Chin, S.W. Yoon, S.W. Kwon, A service-oriented integrated information framework for RFID/WSN-based intelligent construction supply chain management, Autom. Constr. 20, 706–715, 2011.
[12] P. Zheng, Y. Lu, X. Xu, S.Q. Xie, A system framework for OKP product planning in a cloud-based design environment, Robot. Comput. Integr. Manuf. 45, 73–85, 2017.
[13] M. Das, J.C.P. Cheng, K.H. Law, An ontology-based web service framework for construction supply chain collaboration and management, Eng. Constr. Archit. Manag. 22, 551–572, 2015.
[14] Y.Y. Cheng, H.J. Shaw, Cloud-based, service-oriented and knowledge-sharing architecture: Its design and application in shipbuilding, Int. J. Comput. Integr. Manuf. 28, 137–154, 2015.
[15] D. Wu, D.W. Rosen, L. Wang, D. Schaefer, Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation, CAD Comput. Aided Des. 5, 1–14, 2015.
[16] X.F. Liu, M.R. Shahriar, S.M.N. Al Sunny, M.C. Leu, L. Hu, Cyber-physical manufacturing cloud: Architecture, virtualization, communication, and testbed, J. Manuf. Syst. 43, 352–364, 2017.
[17] S. Howell, Y. Rezgui, T. Beach, Integrating building and urban semantics to empower smart water solutions, Autom. Constr. 81, 434–448, 2017.
[18] F. Tao, Y. Zuo, L. Da Xu, L. Zhang, IoT-Based intelligent perception and access of manufacturing resource toward cloud manufacturing, IEEE Trans. Ind. Informatics. 10, 1547–1557, 2014.
[19] N. Liu, X. Li, W. Shen, Multi-granularity resource virtualization and sharing strategies in cloud manufacturing, J. Netw. Comput. Appl. 46, 72–82, 2014.
[20] Y. Cao, S. Wang, L. Kang, C. Li, L. Guo, Study on machining service modes and resource selection strategies in cloud manufacturing, Int. J. Adv. Manuf. Technol. 81, 597–613, 2015.