EN

朱娜

副教授    博士生导师    硕士生导师

个人信息 更多+
  • 性别: 女
  • 在职信息: 在职
  • 所在单位: 环境科学与工程学院
  • 学历: 研究生(博士)毕业
  • 学位: 工学博士学位

其他联系方式

邮编:

通讯/办公地址:

邮箱:

论文成果

当前位置: 中文主页 - 科学研究 - 论文成果

The performance prediction of ground source heat pump system based on monitoring data and data mining technology.

发布时间:2023-04-22
点击次数:
论文类型:
文章
第一作者:
严磊
通讯作者:
胡平放
合写作者:
李常虹,姚喻,邢路,雷飞,朱娜
发表刊物:
Energy and Buildings
收录刊物:
SCI
所属单位:
华中科技大学
刊物所在地:
China
学科门类:
工学
一级学科:
土木工程
项目来源:
湖北省科技厅
文献类型:
J
卷号:
127
页面范围:
1085-1095
ISSN号:
0378-7788
关键字:
GSHP system;Performance prediction;Data mining technology;Long-term;Short-term
DOI码:
10.1016/j.enbuild.2016.06.055
发表时间:
2016-09-28
影响因子:
7.201
摘要:
This paper studies the performance prediction of ground source heat pump (GSHP) systems by real-time monitoring data and data-driven models. A GSHP system, which is installed in an office building of Shaoxing (29.42 degrees N, 120.16 degrees E), China, is real-time monitored from Nov. 2012 to Mar. 2015. Data mining (DM) technologies were simultaneously applied to process the monitoring data and find the required inputs for data-driven models. Back-propagation Neural Network (BPNN) algorithm was selected from six classical sorting algorithms to establish the data-driven models. The performance of the GSHP system from Nov. 2012 to Mar. 2015 was evaluated by the monitoring data. And the long-term performance was predicted by the data-driven models. The monitoring results show that the application effectiveness of the GSHP system is unsatisfied because of the high pumping power. Moreover, the relationship between the short-term and long-term performance of GSHP system is investigated for the purpose of predicting the long-term performance of GSHP system by a short-term monitoring data. The monitoring data of different days in several modes are needed to predict the long-term performance of GSHP system under a certain deviation. (C) 2016 Elsevier B.V. All rights reserved.